# Standard Descriptors for Geosites







# TOOLKIT for WATER SERVICES: Number 2.1

The purpose of this document is to establish a nationally acceptable standard for the description of groundwater related data being generated in the execution of groundwater development projects funded by Government or government agencies

#### Standard Descriptors for Geosites

#### © DWAF, March 2004

Published by Department of Water Affairs and Forestry Directorate: Information Programmes Private Bag X313 PRETORIA 0001 Republic of South Africa Tel: (012) 336 7500

This publication may be reproduced only for non-commercial purposes and only after appropriate authorisation by the Department of Water Affairs and Forestry has been provided. No part of this publication may be reproduced in any manner without full acknowledgement of the source.

## Compiled from

Reports by CSIR and Institute for Groundwater Studies

Editing Phil Hobbs and HJ Brynard

#### Inputs

Jan Girman, Ernst Bertram, Paul du Plessis, Hélene Mullin, Jaco de Lange, Zbigniew Dziembowski, Ingrid Dennis, Gerrit van Tonder, Danie Vermeulen, Ricky Murray, John Weaver, Phillip Ravenscroft, Julian Conrad, HJ Brynard, Phil Hobbs

Produced under: The NORAD-Assisted Programme for the Sustainable Development of Groundwater Sources under the Community Water and Sanitation Programme in South Africa

## Foreword

## **Toolkit for Water Services**

Groundwater has historically been given limited attention, and has not been perceived as an important water resource, in South Africa. This is reflected in general statistics showing that only 13 % of the nation's total water supply originate from groundwater. However, because of the highly distributed nature of the water demand in rural and informal peri-urban settlements, regional schemes are, in most instances, not economically feasible. And because of generally increasing water scarcity and decreasing available river and spring flows during low flow and drought periods, as well as wide-spread problems of surface water pollution in rural areas, groundwater will be the most feasible option for a large part of the new water demand. Already it is estimated that over sixty percent of community water supply is from groundwater, making it a strategically important resource.

The NORAD-Assisted Programme for the Sustainable Development of Groundwater Sources under the Community Water and Sanitation Programme in South Africa was managed by the Department of Water Affairs and Forestry (DWAF) between 2000 and 2004. The Programme undertook a series of inter-related projects aimed at enhancing capacity of water services authorities and DWAF to promote and implement sustainable rural water supply schemes based on groundwater resources and appropriate technologies.

The next page has a full list of the Programme outputs. The formats for these range from documents to software programmes and an internet portal, to reference sites where communities have implemented appropriate technologies. For more information on the "package" of Programme outputs contact your nearest DWAF Regional Office or Head Office in Pretoria.

It is our sincere hope that this Programme will contribute to the body of work that exists to enable more appropriate use and management of groundwater in South Africa.

**Standard Descriptors for Geosites** is Number 2.1 in the Toolkit for Water Services. The purpose of this document is to establish a nationally acceptable standard for the description of groundwater related data being generated in the execution of groundwater development projects funded by Government or government agencies.



# **Toolkit for Water Services**

## 1 Overview documentation

- 1.1 A Framework for Groundwater Management of Community Water Supply
- 1.2 Implementing a Rural Groundwater Management System: a step-by-step guide

## 2 Descriptors

## 2.1 Standard Descriptors for Geosites

## 3 Groundwater Protection

- 3.1 Involving community members in a hydrocensus
- 3.2 Guidelines for protecting springs
- 3.3 Guidelines for protecting boreholes and wells
- 3.4 Guidelines on protecting groundwater from contamination
- 3.4.1 Animal kraals, watering points and dipping tanks
- 3.4.2 Burial sites
- 3.4.3 Informal vehicle servicing, spray painting and parts washing facilities
- 3.4.4 Pit latrines
- 3.4.5 Runoff water
- 3.4.6 Subsistence agriculture
- 3.4.7 Informal waste disposal

## 4 Maps

4.1 Thematic Groundwater Maps

## 5 Software

- 5.1 Sustainability Indexing Tool (SusIT)
- 5.1.1 SusIT User Guide
- 5.1.2 SusIT Field Data Capturer's User Manual
- 5.1.3 SusIT Questionnaire
- 5.1.4 SusIT Information Brochure
- 5.2 AquiMon Management System
- 5.2.1 AquiMon Information Brochure
- 5.3 Geohydrological Data Access System (GDAS)
- 5.3.1 GDAS Information Brochure

## 6 Monitoring

6.1 Groundwater Monitoring for Pump Operators

## 7 Sustainability

- 7.1 Sustainability Best Practices Guidelines for Rural Water Services
- 7.2 Introductory Guide to Appropriate Solutions for Water and Sanitation
- 7.3 Decision Making Framework for Municipalities

## 8 Reference Sites

- 8.1 Genadendal Information Brochure
- 8.2 Kammiesberg Information Brochure
- 8.3 Maputaland Information Brochure

#### TABLE OF CONTENTS

| P            | REFACE.            |                                                                      |          |
|--------------|--------------------|----------------------------------------------------------------------|----------|
| E            | XECUTI             | VE SUMMARY                                                           | 9        |
| 1            | CENH               |                                                                      | 10       |
| I            | GENI<br>1.1 Late   | SKAL INTRODUCTION                                                    | 10       |
|              | 1.1 Intr           |                                                                      | 10       |
|              | 1.2 Nec            | essity for Standards                                                 | 10<br>11 |
|              | 1.3 Doc            | ument Objectives                                                     |          |
|              | 1.4 Doc            | ument Format                                                         | 11       |
| $\mathbf{r}$ | 1.5 Leg            | I Framework                                                          | 11       |
| Ζ            | GEUS               | THE DASIC INFORMATION DESCRIPTORS                                    | 13       |
|              | 2.1 Geo            | site Type                                                            | 13       |
|              | 2.2 Get            | Latitude longitude and elevation                                     | 13       |
|              | 2.2.1              | Mathad used to determine as ordinates                                | 15       |
|              | 2.2.2              | A gaurage of go ordinates                                            | 13       |
|              | 2.2.3              | Reference datum                                                      | 10       |
|              | 2.2.4              | Date Co. ordinates Determined                                        | 10<br>10 |
|              | 2.2.J              | site Setting                                                         | 19       |
|              | 2.5 Gec            | site Selector. Method of Selection and Target Feature                | 20       |
|              | 2.7 Occ            | oose of Geosite                                                      | 20       |
|              | $2.5  \mathrm{rm}$ | ent Status of Geosite                                                |          |
|              | 2.0 Cur<br>2.7 Geo | site Sketch Map                                                      | 23       |
|              | 2.7 Gec<br>2.8 Con | fidentiality                                                         | 23       |
| 3            | GEOS               | ITE CONSTRUCTION DESCRIPTORS                                         | 25       |
| 5            | 3.1 Bor            | choles                                                               | 25       |
|              | 3.1.1              | Drilling methods                                                     | 25       |
|              | 3.1.2              | Drilling fluids                                                      |          |
|              | 3.1.3              | Formation sampling                                                   |          |
|              | 3.1.4              | Drilling diameter and depth                                          |          |
|              | 3.1.5              | Final/total depth                                                    |          |
|              | 3.1.6              | Drilling data quality                                                |          |
|              | 3.1.7              | Drilling penetration rate                                            |          |
|              | 3.1.8              | Drilling contractor                                                  | 35       |
|              | 3.1.9              | Drilling date                                                        |          |
|              | 3.2 Dug            | Wells                                                                |          |
|              | 3.2.1              | Purpose and construction methods                                     |          |
|              | 3.2.2              | Formation sampling                                                   |          |
|              | 3.2.3              | Geometry of well                                                     |          |
|              | 3.3 Spri           | ngs                                                                  |          |
|              | 3.3.1              | Use                                                                  |          |
|              | 3.3.2              | Origin and classification                                            |          |
|              | 3.4 Late           | ral Collectors/Drains                                                | 42       |
|              | 3.4.1              | Purpose and types                                                    | 42       |
|              | 3.4.2              | Construction and drainage materials (summarised from www.ecy.wa.gov) | 44       |
|              | 3.5 Tun            | nels                                                                 | 45       |
|              | 3.6 Sink           | holes                                                                | 46       |
|              | 3.6.1              | Types and Origin                                                     | 46       |
|              | 3.6.2              | Geometry of sinkhole and subsidence features                         | 48       |
|              | 3.7 Min            | es                                                                   | 50       |

| 4 | GEOI      | OGICAL DESCRIPTORS                                  | 53       |
|---|-----------|-----------------------------------------------------|----------|
|   | 4.1 Intr  | oduction                                            | 53       |
|   | 4.2 Lith  | ology                                               | 53       |
|   | 4.2.1     | Soil and unconsolidated strata                      | 53       |
|   | 4.2.2     | Hard rock component                                 | 56       |
|   | Lithostra | tigraphy                                            | 59       |
| 5 | GEOI      | IYDROLOGICAL DESCRIPTORS                            | 60       |
|   | 5.1 Intr  | oduction                                            | 60       |
|   | 5.2 Wat   | er Strike Depth                                     | 60       |
|   | 5.2.1     | Unconsolidated strata                               | 60       |
|   | 5.2.2     | Consolidated strata                                 | 61       |
|   | 5.3 Wat   | er Strike Yield                                     | 61       |
|   | 5.4 Stat  | c Water Level                                       | 62       |
|   | 5.5 Wat   | er Quality                                          |          |
|   | 5.5.1     | Introduction                                        |          |
|   | 552       | Electrical conductivity                             | 63       |
|   | 553       | Temperature                                         | 63       |
|   | 554       | Sampling new boreholes                              | 64       |
|   | 555       | Sampling during test pumping                        | 64       |
|   | 556       | Sampling of existing boreholes                      | 64       |
|   | 5.6. Che  | mical Analysis                                      | 0+<br>64 |
| 6 | GEOS      | IT'E DESIGN DEVELOPMEN'T AND COMPLETION DESCRIPTORS | <br>66   |
| 0 | 6.1 Inte  | eduction                                            | 00       |
|   | 6.2 Con   | nge                                                 |          |
|   | 0.2 Casi  | Ilgs                                                | 00       |
|   | 6.2.1     | Flatted assing                                      | 00       |
|   | 0.2.2     | Slotted cashig                                      | 07       |
|   | 0.5 Sere  |                                                     | 0/       |
|   | 0.3.1     | Homogeneous unconfined aquifer                      | 08       |
|   | 6.3.2     | Heterogeneous unconfined aquifer                    | 08       |
|   | 0.3.3     | Homogeneous contined aquifer                        | 08       |
|   | 6.3.4     | Heterogeneous confined aquifer                      | 69       |
|   | 6.4 Filte | er and Gravel Packs                                 | /0       |
|   | 6.4.1     | Dug Well Linings                                    | /1       |
|   | 6.5 Gec   | site Development                                    | /1       |
|   | 6.5.1     | Boreholes                                           | /1       |
|   | 6.5.2     | Springs                                             | 73       |
|   | 6.5.3     | The spring catchment                                | 74       |
| _ | 6.5.4     | Artesian spring development                         | 74       |
| 7 | GEOS      | ITE AND AQUIFER TESTING DETAILS                     | 76       |
|   | 7.1 Intr  | oduction                                            |          |
|   | 7.2 Тур   | es of Test Pumping                                  | 76       |
|   | 7.2.1     | Step discharge (SD) test                            | 76       |
|   | 7.2.2     | Constant discharge (CD) test                        | 76       |
|   | 7.2.3     | Recovery test                                       | 77       |
|   | 7.2.4     | Extended step discharge test                        | 77       |
|   | 7.2.5     | Other tests                                         | 77       |
|   | 7.3 Cho   | ice and Duration of Test                            | 77       |
|   | 7.4 Dat   | a Collection                                        | 79       |
|   | 7.5 Data  | a Analysis                                          | 79       |
| 8 | IN-SI'    | TU GEOPHYSICAL LOGGING                              | 81       |
| 9 | OPER      | ATIONAL MANAGEMENT AND INSTALLED EQUIPMENT          | 83       |

4

| 9.1         | Introduction                     |  |
|-------------|----------------------------------|--|
| 9.2         | Abstraction Recommendations      |  |
| 9.3         | Monitoring Recommendations       |  |
| 9.4         | Installed Equipment              |  |
| 10 <b>C</b> | GROUNDWÂTER MONITORING           |  |
| 10.1        | 1 National Monitoring (Level 1)  |  |
| 10.2        | 2 Catchment Monitoring (Level 2) |  |
| 10.3        | 3 Local Monitoring (Level 3)     |  |
| 11 (        | CONCLUSION                       |  |
| 12 A        | ACKNOWLEDGEMENTS                 |  |
| 13 F        | REFERENCES                       |  |

#### List of Tables

| 2.1        | Geosite types                                                                     | 13       |
|------------|-----------------------------------------------------------------------------------|----------|
| 2.2        | Geosite position determination methods                                            | 16       |
| 2.3        | Scale and uncertainty                                                             | 17       |
| 2.4        | Land cover classification descriptors                                             | 18       |
| 2.5        | Geomorphological classification descriptors                                       | 19       |
| 2.6        | Geosite selector                                                                  | 20       |
| 2.7        | Geosite selection methods                                                         | 20       |
| 2.8        | Geological target features                                                        | 21       |
| 2.9        | Geosite purpose                                                                   | 21       |
| 2.10       | Geosite status                                                                    | 22       |
| 3.1        | Drilling method                                                                   | 29       |
| 3.2        | Drilling fluid types                                                              | 32       |
| 3.3        | Example of borehole diameter and depth recording                                  | 33       |
| 3.4        | Drilling contractors adherence to standards and quality control levels            | 34       |
| 3.5        | Drilling contractor information                                                   | 34       |
| 3.6        | Dug well construction methods                                                     | 35       |
| 3.7        | Formation sampling                                                                | 36       |
| 3.8        | Geometry and general construction information                                     | 36       |
| 3.9        | Seasonal spring classification                                                    | 38       |
| 3.10       | Descriptors for the classification of springs                                     | 40       |
| 3.11       | Descriptors for lateral collector/drain type                                      | 43       |
| 3.12       | Construction descriptors for lateral collectors/drains                            | 44       |
| 3.13       | Tunnel use descriptors                                                            | 45       |
| 3.14       | Tunnel type and geometry descriptors                                              | 45       |
| 3.15       | Descriptors for sinkholes and subsidence features                                 | 46       |
| 3.16       | Classification of sinkhole sizes                                                  | 47       |
| 3.17       | Mine types and extraction methods                                                 | 50       |
| 3.18       | Mine descriptors                                                                  | 51       |
| 4.1        | Particle size classification                                                      | 53       |
| 4.2        | Thickness of overburden descriptors                                               | 55       |
| 4.3        | Descriptors for sample proportions                                                | 55       |
| 4.4        | Additional adjectives or qualifiers to be used in unconsolidated and consolidated | 57       |
| 4 5        | material descriptions                                                             | 56       |
| 4.5        | Degree of weathering descriptors                                                  | 56       |
| 4.6        | Discontinuity spacing descriptors                                                 | 5/       |
| 4./        | Discontinuity descriptors – percussion drilling                                   | 5/       |
| 4.8        | Formation strength classification                                                 | 58       |
| 5.1        | Classification of springs by discharge rate                                       | 61       |
| 5.Z        | Example of measurements associated with SWL recordings                            | 61       |
| 5.3        | Conversion factors for electrical conductivity units                              | 62       |
| 5.4<br>( 1 | Spring temperature classification                                                 | 03       |
| 0.1        | Casing material                                                                   | 05       |
| 0.2        | Example of information recorded when casing and screens are used jointly          | 00       |
| 0.5        | Screen material                                                                   | 69       |
| 0.4        | Type of opening<br>Filter peak abarratoristics                                    | 69       |
| 0.5        | Filter and groupl near details                                                    | 09<br>70 |
| 0.0<br>6 7 | Machanical borshold development methods and application                           | 70       |
| 6.8        | Chemical borehole development additives                                           | /1<br>72 |
| 0.0        | Chemical borehole development additives                                           | 12       |

| 6.9  | Spring development descriptors                          | 74 |
|------|---------------------------------------------------------|----|
| 7.1  | Types of borehole test and their minimum duration       | 77 |
| 7.2  | Borehole test descriptors                               | 77 |
| 7.3  | Data to be recorded and associated units of measurement | 78 |
| 7.4  | test pumping data analysis results and units of measure | 79 |
| 8.1  | Borehole logging techniques                             | 80 |
| 8.2  | Borehole logging descriptors                            | 81 |
| 9.1  | Production borehole operational recommendations         | 82 |
| 9.2  | Monitoring recommendations                              | 82 |
| 9.3  | Borehole equipment and monitoring facilities            | 83 |
| 9.4  | Pump types                                              | 84 |
| 9.5  | Energy source for borehole pumps                        | 84 |
| 10.1 | Variable monitoring parameters                          | 86 |

#### List of figures

| 2.1 | The world as a globe showing the longitude and latitude values      | 13 |
|-----|---------------------------------------------------------------------|----|
| 2.2 | The parallels and meridians that form a graticule                   | 14 |
| 2.3 | A simple sketch map for orientation and monitoring purposes         | 23 |
| 3.1 | Spring classification based on geomorphological/geological controls | 39 |
| 3.2 | Three-tier classification of springs                                | 40 |
| 3.3 | Schematic diagram of an interceptor drain                           | 41 |
| 3.4 | Schematic diagram of a relief drain                                 | 41 |
| 3.5 | Schematic diagram of a strip drain                                  | 42 |
| 3.6 | Schematic diagram of an agricultural drain                          | 42 |
| 3.7 | Mechanism for the formation of collapse sinkholes                   | 48 |
| 3.8 | Mechanism for the formation subsidence sinkholes                    | 49 |
| 4.1 | Sedimentary particle shapes                                         | 54 |
| 6.1 | Spring box development                                              | 73 |
| 6.2 | Spring catchment development                                        | 73 |
| 6.3 | Artesian spring development                                         | 74 |

## List of Apendices

| 1. | Stratigraphy of South Africa                                        | 92 |
|----|---------------------------------------------------------------------|----|
| 2. | Stratigraphic classification: main categories and unit (rank) terms | 93 |
| 3. | Litho- and Chronostratigraphic units                                | 94 |

7

#### PREFACE

Groundwater's strategic importance is growing. By now more than 70% of communities that have been served are receiving their supply from groundwater sources. At the same time groundwater must also be managed as a significant water resource in terms of the National Water Act, 1998.

All this cannot be achieved without also significantly improving the groundwater information base. This in turn requires that every information and data source is tapped and shared in the national interest, e.g. from other government departments, from local government, from NGOs and from drillers and consultants. That is where the "Standard Geosite Descriptors" come in. Systematic sharing of data is only possible when we all use the same terminology for the groundwater attributes we want to describe, measure and apply for many different purposes.

You will recognise that most of the described geosite attributes are not new, but this publication represents an effort to formalise everyday business practices used by most of us. New technological developments, e.g. the Global Positioning System, demand that new attributes be added and that these are described in some detail to explain their role in relation to groundwater data.

The standards for the description of other groundwater-related features equating to lines and polygons, e.g. faults and aquifers, will follow.

An appeal is herewith made to everyone dealing with groundwater data to carefully study the suggested standard descriptors and comment on their correctness and sufficiency. We thank those who have already done so, and look forward to many more comments.

Stefan van Biljon

#### DIRECTOR: HYDROLOGICAL SERVICES

DEPARTMENT OF WATER AFFAIRS AND FORESTRY

#### EXECUTIVE SUMMARY

The objective of this document is to provide background information in support of a standard format for describing data, information, details, observations and/or materials associated with a geosite. It addresses, amongst others, the following aspects:

- Attributes to be described
- Units of measurement

Numerous projects within the South African Government's Reconstruction and Development Program (RDP) address the supply of domestic water to 12 000 – 15 000 previously disadvantaged communities. Many of these incorporate groundwater development projects involving exploration, the drilling of new boreholes and the development and protection of springs.

A wide range of people and professions is involved in groundwater source development and the analysis of geohydrological data. Each of these activities generates valuable data or information that is needed to improve the efficacy of groundwater development and ensure the sustainable utilisation of this national resource.

With the many different groupings of people involved in groundwater development and utilisation, there is an associated diversity of databases and means of recording geohydrological data. It can be difficult to exchange and/or compare data from different databases if the data are not standardised. Data standards for groundwater need to be developed to ensure the easy sharing of information and to reduce data misinterpretation as far as possible.

This document does not promote new standards *per sè*, it rather formalises current practices and standards. Although the document was primarily designed to be used as a field guide, it was felt that background information should be provided in support of the suggested standard.

Chapter 14 of the National Water Act (Act 36 of 1998) specifies that monitoring, recording, assessing and dissemination of information on water resources is critically important for achieving the objectives of the Act. To fulfil the requirements of the national information systems, it is necessary to capture geohydrological data. Since one of the fundamental building blocks of a groundwater information system is geosite data, it is essential that its recording and capture adhere to a standard that enhances its value.

The document includes the following chapters in which the following relevant aspects are addressed: Introduction: A general introduction including reasons for establishing standard descriptors. Basic geosite information: Descriptors pertaining to the position of a geosite and other static information.

- Geosite construction: Data associated with borehole drilling and construction.
- Geosite geology: Attributes of the geology/lithology associated with a geosite.
- Geosite geohydrology: Attributes of the groundwater resource associated with a geosite.
- Geosite design, development and completion.
- Geosite and aquifer testing.
- Geophysical logging
- Operational management and installed equipment
- Groundwater monitoring
- Conclusion
- Acknowledgements
- References

#### **1 GENERAL INTRODUCTION**

#### 1.1 Introduction

Extensive groundwater exploration and development is currently being carried out throughout South Africa. This includes the siting and drilling of new boreholes, the refurbishment and equipping of existing boreholes, the development and protection of springs, etc. These activities involve a wide range of persons and professions, and provide a wealth of data that are important for the following reasons:

- enhancing the collective understanding of South Africa's scarce and precious groundwater resources,
- improving the efficacy of groundwater development, and
- ensuring the sustainable utilisation of this national resource.

Under the direction of the South African Government's Reconstruction and Development Program (RDP), which includes the supply of potable water to between 12 000 and 15 000 previously disadvantaged communities, more groundwater development projects are currently being implemented than all those of the past put together. The latest restructuring of the Department of Water Affairs and Forestry (DWAF) is resulting in District Municipalities having to accept responsibility for the development of their own water supply sources. Since groundwater has a major role to play in particular districts, more professionals and institutions are becoming involved in groundwater development projects.

#### 1.2 Necessity for Standards

With the many different groupings of people involved in groundwater development and utilisation, there is an associated diversity in the manner and means of recording geohydrological data and information. In this regard, standards and standardisation facilitate the exchange and/or comparison of data between different users and databases.

The Standard Descriptors for Geosites project is just one component of DWAFs Directorate: Hydrological Services' groundwater data acquisition strategy. Many issues are addressed in this strategy. These include the forms for collecting geohydrological data, encouraging all those involved in the development of groundwater resources to provide the data to DWAF, facilitating access to the data in the National Groundwater Data Base (National Groundwater Archive), etc. (*pers. comm.* E. Bertram, 2002). Electronic data exchange standards also need to be developed to ensure the easy sharing of data, reduce its misinterpretation and redress the perception that data is a 'bargaining chip'. For example, using a standard co-ordinate reference system for the transfer of spatial data avoids confusion in terms of projection details such as the central meridian, standard parallels and spheroid. Establishing conventions in data management (e.g. negative values for artesian head measurements in free-flowing boreholes, positive values for water level measurements below the ground surface) avoids misinterpretation. Proper metadata procedures give the data supplier an opportunity to describe the reliability and limitations placed on the relevant data set. There are also significant financial savings to be realised from implementing standard geosite descriptors.

This document does not promote new standards *per sè*; it rather formalises current practices and standards. The benefit realised from this formalisation is that it enables the creation of dedicated data capturing software packages. A national data exchange standard will be established for those who have developed proprietary or bought commercial systems.

Although the terms "geohydrologist" and "geohydrology" have been used throughout this document, it is appreciated that use of the terms "hydrogeologist" and "hydrogeology" may, in some instances, be more appropriate. For the sake of standardisation and consistency, however, the former terms have been used throughout this document.

#### 1.3 Document Objectives

Since the document is to be used as a field guide when reporting groundwater point source data and collecting relevant information, its objectives are to provide background information to all geosite attributes and propose a standard way of describing these items. In essence, a reference as to what recordable data are mandatory and the available options for each data item. As such, it will form part of the geohydrologists basic field kit comprising items such as a hand lens, geological pick, colour chart, GPS, water level meter, measuring tape, stopwatch, geological and geohydrologistal maps, etc.

#### 1.4 Document Format

The document addresses each of the sequential activities typically associated with the development of groundwater resources in their order of execution.

Text boxes in each Chapter provide a concise summary of relevant standards provided in the document. Numerous tables summarise the options available for describing various aspects of a geosite, whether it be borehole drilling, testing and equipping, spring development and protection or mine-related information, amongst others.

The Appendices include a listing of chronostratigraphic, lithostratigraphic and lithological terms as defined by the Council for Geoscience. These terms represent the accepted standard for use in geological descriptions.

#### 1.5 Legal Framework

Chapter 14 of the National Water Act (Act 36 of 1998) specifies that monitoring, recording, assessing and dissemination of information on water resources is critically important for achieving the objectives of the National Water Act. The national information systems required, and the objectives of these systems, are listed below:

#### Establishment of national information systems (139)

- ✤ The Minister must, as soon as reasonably practicable, establish national information systems regarding water resources (1)
- The information systems may include, among others (2)

A hydrological information system (2a)

- A water resource quality information system (2b)
- A groundwater information system (2c)
- A register of water use authorizations (2d).

#### **Objectives of national information systems (140)**

The objectives of national information systems are:

- To store and provide data and information for the protection, sustainable use and management of water resources
   (a)
- To provide information for the development and implementation of the national water resource strategy (b)
- To provide information to water management institutions, water users and the public (c)

For research and development (c i) For planning and environment impact assessments (c ii) For public safety and disaster management (c iii) On the status of water resources (c iv).

To fulfil the above requirements (particularly 2c), it is necessary to capture geohydrological data, one of the fundamental building blocks of a geohydrological information system. For example, the drilling of boreholes provides valuable point data of geological and geohydrological conditions. A synthesis of this data provides a clearer and more complete picture of the groundwater environment to the extent that associated interactions can be developed and understood. It is therefore essential that borehole data be captured and, perhaps more importantly, that the format of its capture be standardised in order to enhance its value. This sentiment applies equally to any other geosite.

#### 2 GEOSITE BASIC INFORMATION DESCRIPTORS

#### 2.1 Geosite Type

Although boreholes represent the most common type of geosite, it is relevant to recognise that there are many other features related to groundwater abstraction, occurrence and monitoring. A Geosite is defined as 'a naturally occuring or artificially cexcavated or constructed or improved underground cavity which can be used for the purpose of a) intercepting, collection or storing of water in, or removing water from an aquifer, b) observing and colleting data and information on water in an aquifet, or c) recharging an aquifer (Xu, et al, 2003). These features are listed in Table 2.1. Their positions can be measured, topographic settings assigned, current status and purpose determined and their location mapped or sketched.

| Table 2.1       | Geosite types |
|-----------------|---------------|
| Desc            | criptor       |
| Borehole        |               |
| Dug well        |               |
| Wellpoint       |               |
| Drain           |               |
| Tunnel          |               |
| Mine            |               |
| Seepage pond    |               |
| Spring          |               |
| Sinkhole        |               |
| Lateral collect | or            |

#### 2.2 Geosite Position

#### 2.2.1 Latitude, longitude and elevation

A geographic position(geosite) is typically referenced by its longitude and latitude values. Longitude and latitude are angles measured from the earth's centre to a point on the earth's surface. The angles are usually measured in degrees (Figure 2.1).



Figure 2.1 The world as a globe showing the longitude and latitude values.

In the spherical system, 'horizontal' or east-west lines represent lines of equal latitude or *parallels*. 'Vertical' or north-south lines represent lines of equal longitude or *meridians*. These lines encompass the globe and form a gridded network called a *graticule* (Figure 2.2).



#### Figure 2.2 The parallels and meridians that form a graticule.

The line of latitude midway between the poles is called the equator. It defines the line of zero latitude. The line of zero longitude is called the prime meridian. For most geographic coordinate systems, the prime meridian is that which passes through Greenwich, England.

The origin of the graticule (0,0) is defined by where the equator and prime meridian intersect. The globe is then divided into four geographical quadrants that are based on compass bearings from the origin. North and south are above and below the equator, and west and east are to the left and right of the prime meridian, respectively.

Latitude and longitude values are traditionally measured in decimal degrees or in degrees, minutes and seconds (DMS). Latitude values are measured relative to the equator and range from  $-90^{\circ}$  at the South Pole to  $+90^{\circ}$  at the North Pole. Longitude values are measured relative to the prime meridian. They range from  $-180^{\circ}$  furthest to the west, to  $+180^{\circ}$  furthest to the east. Using Greenwich as the prime meridian, South Africa located south of the equator and east of Greenwich has negative latitude values and positive longitude values.

Although latitude and longitude can locate exact positions on the surface of the globe, they are not uniform units of measure. Only along the equator does the distance represented by one degree of longitude approximate the distance represented by one degree of latitude. This is because the equator is the only parallel as large as a meridian. (Circles with the same radius as the spherical earth are called *great circles*. The equator and all meridians are great circles).

Above and below the equator, the circles defining the parallels of latitude get gradually smaller until they become a single point at the North and South Poles where the meridians converge. As the

Standard Descriptors for Geosites

meridians converge toward the poles, the distance represented by one degree of longitude decreases to zero. For example, using the Clarke 1880 spheroid, one degree of longitude at the equator equals 111.321 km, while at 60° latitude it is only 55.802 km. Since degrees of latitude and longitude do not have a standard length, distances or areas can not be measured accurately on a flat map or computer screen (Kennedy and Kopp, 2000).

A projected co-ordinate system is defined on a flat, two-dimensional surface. Unlike a geographic co-ordinate system, a projected co-ordinate system has essentially constant lengths, angles and areas across the two dimensions. A projected co-ordinate system is always based on a geographic co-ordinate system that itself is based on a sphere or spheroid. In a projected co-ordinate system, locations are identified by x and y co-ordinates on a grid, with the origin at the centre of the grid. Each position has two values that reference it to the central location. One specifies its horizontal position and the other its vertical position. The two values are called the x co-ordinate and y co-ordinate. Using this notation, the co-ordinates at the origin are x = 0 and y = 0. Units are consistent and equally spaced across the full range of x and y.

Whether the earth is treated as a sphere or a spheroid, its three-dimensional surface must be transformed to create a flat map. This mathematical transformation is commonly referred to as a map projection. Representing the earth's surface in two dimensions causes distortion in the shape, area, distance or direction of the data. A map projection uses mathematical formulae to relate spherical accordance on the globe to flat, planar co-ordinates. Different projections cause different types of distortion. For example, a projection could maintain the area of a feature but alter its shape. The choice of map projection depends mainly on the project scale and purpose. Thus geosite co-ordinates should be recorded as degrees, minutes and decimal seconds and not in projected x and y coordinates. This format is a good basic reference system that also facilitates the exchange of data. As already mentioned for the South African situation, longitude will be a positive value and the latitude will be negative.

If reference co-ordinates in spreadsheets or mapping software need to be checked, then degrees (dd), minutes (mm) and seconds (ss) are easily converted to decimal degrees significant to six decimals (i.e. dd.ddddd) by using the following formula:

$$dd + (mm/60) + (ss/3600) = dd.ddddd$$

It is recognised that different manufacturers of GPS instruments display the measured co-ordinates in different formats. Since these can be changed quite readily, positional data are to be recorded as degrees, minutes and decimal seconds with a zero as default value in the first decimal, e.g. 24°36' 19.0".

#### 2.2.2 Method used to determine co-ordinates

There are basically three ways in which geosite positions can be measured. The geosite position can be plotted on a map relative to identifiable/identified features and the co-ordinates determined from the co-ordinate references of the map. The map may take the form of a topocadastral map, an orthophoto, a satellite image, etc. Using a topocadastral or orthophoto map is the cheapest means of determining a geosite position, although possibly the least accurate.

A second method is to use global positioning system (GPS) technology. GPS uses radio signals from a constellation of earth-orbiting satellites to determine the three-dimensional position of earth receivers. By using variations of the Doppler principle in connection with data on satellite position,

Standard Descriptors for Geosites

velocity, orbit and timing, mathematical and statistical models can be created and solved to yield first-order accuracies of as little as one centimeter during less than one hour of observation time (Slonecker and Carter, 1990). Such levels of accuracy do come with an associated cost that is usually well beyond the budget of most heohydrological projects. Interestingly, if data on the satellite geometry, position and movement (called ephemeral data) are known, the distance to an earth-based receiver can be geometrically calculated. Ephemeral data on satellites is constantly monitored by a network of tracking stations on earth, and relayed back to the satellite where it is included in the transmitting signal that is emitted by the satellites and tracked by the GPS receiver. If this ranging process is repeated constantly from several satellites and known errors caused by clock timing and atmospheric effects are modelled, a precise earth position can be calculated and referenced to a known datum and co-ordinate system. Differential positioning involves determining a position, or positions, based on satellite data in conjunction with a known earth control point such as a trigonometric beacon or survey peg. A triangulated solution is then accomplished in a fashion similar to traditional surveying techniques. This approach can significantly improve the two-dimensional measurement of a geosite position.

A third method of determining geosite co-ordinates is to use traditional survey techniques. This is typically the most expensive but undeniably the most accurate of the three approaches. For particular projects this method would be recommended strongly, particularly where geosite elevations need to be determined accurately.

In low technology approaches where maps, GPS or survey techniques can not be utilised, the farm name and number, and if available and relevant, the portion number and name must be recorded. If the district name is also provided, then the extensive cadastral database that exists for South Africa allows the farm to be located and an approximate position for the geosite, usually taken as the centre of the farm, determined. Table 2.2 lists the different options for measuring a geosite position.

| Table 2.2 Geosite r | position determination methods |
|---------------------|--------------------------------|
|---------------------|--------------------------------|

| Descriptor                         |
|------------------------------------|
| Surveying                          |
| GPS (Global Positioning System)    |
| Differential GPS                   |
| Estimated from 1:10 000 scale map  |
| Estimated from 1:25 000 scale map  |
| Estimated from 1:50 000 scale map  |
| Estimated from 1:100 000 scale map |
| Estimated from 1:250 000 scale map |
| Estimated from other scale map     |
| District and Farm Name and Number  |

#### 2.2.3 Accuracy of co-ordinates

The concept of accuracy is central to any method of spatial measurement and is essential to understand because varying levels of accuracy are associated with different survey and positioning techniques. There are numerous ways to report spatial error. For example a proportional error can be reported, or confidence regions given, or ground units provided. The spatial extent of error in ground units (i.e. metres) is the ultimate measure, and the one that is probably of most interest to the geohydrologist, planner, regulator or data manager. Accuracy, in this context, is considered the closeness of an observation to a "true value".

Considering the first method of co-ordinate determination, viz. marking a position on a map, then the errors listed in Table 2.3 can be generated at the respective map scales when a 0.5 mm pencil point is used to mark a geosite position.

| Pencil point size (mm) | Map scale | Distance on ground (m) |
|------------------------|-----------|------------------------|
|                        | 1:10 000  | 5                      |
| 0.5                    | 1:50 000  | 25                     |
|                        | 1:250 000 | 50                     |

Table 2.3Scale and uncertainty

This is just one source of error associated with the scale of the maps used. There are other sources, such as the uncertainty of the geosite position on the map due to a lack of identifying features, the inaccurate marking of the geosite position with the map edge graticules, the inaccurate scaling-off of the graticules, etc.

When using hand held GPS devices, the uncertainty of the point measurement is usually given by the instrument as a ground measurement. Depending on the satellite configuration, density and atmospheric conditions, it is quite often in the order of 5 to 15 metres for cheaper GPS instruments, with the accompanying elevation reading in error by a factor of 10 (i.e. 50 to 150 metres). It is therefore important to record the reported co-ordinate accuracy (in GPS jargon the Estimated Position Error or EPE), and to check the accuracy of the altitude clearly indicating the method used.

With conventional surveying techniques, inaccuracies in all three dimensions can be as small as a few millimetres.

#### 2.2.4 Reference datum

The co-ordinate reference system previously used in South Africa as the foundation for all surveying, engineering and geo-referenced projects and programmes was the Cape Datum. As with other national control survey networks throughout the world, which were established using traditional surveying techniques, flaws and distortions in these networks have become easily detectable using modern positioning techniques such as the GPS. In addition to these flaws and distortions, most national geodetic networks do not have the centre of datum reference ellipsoids coincident with the centre of the earth, thus making them useful only to the datum area of application. The upgrading, recomputation and repositioning of the South African coordinate system has thus been driven by the advancement of modern positioning technologies and the globalisation of these techniques for navigation and surveying purposes.

Since 1 January 1999, the official coordinate system for South Africa is based on the World Geodetic System 1984 ellipsoid, commonly known as WGS84, with the ITRF91 (epoch 1994.0) coordinates of the Hartebeeshoek Radio Astronomy Telescope used as the origin of this system. This new system is known as the **Hartebeeshoek94 (WGS84) Datum** (Chief Directorate: Surveys and Mapping, 1999). Visit http://w3sli.wcape.gov.za/surveys/ for more information. Most GPS instruments offer the user a wide selection of reference datum. Although it is a legal requirement to use the **WGS84** when working in South Africa, a strong caution in this regard is needed. The fact is that a large number of the available printed topocadastral and topographic maps still reflect the Cape datum as reference. The difference between the Cape and WGS84 datums may be substantial (up to 300m), so that applying a WGS84-derived co-ordinate to a map based on the Cape datum will create confusion especially if the user is not aware of this. It is recommended, therefore, that users continue to employ their preferred reference system, but that the datum used be clearly indicated when reporting positional data.

All heights are referenced to mean sea level (msl) as determined in Cape Town and verified at tide gauges in Port Elizabeth, East London and Durban. Elevation values are therefore to be recorded as metres above mean sea level (mamsl).

#### 2.2.5 Date Co-ordinates Determined

The date that the co-ordinates of a geosite was determined must be recorded in the international date format ccyy-mm-dd (e.g. the 24<sup>th</sup> January 2002 is represented as 2002-01-24).

- Geosite coordinates (latitude and longitude) must be recorded in degrees, minutes and decimal seconds, with zero as default value in the first decimal of the second.
- Ground level at the geosite must be recorded as metres above mean sea level (mamsl).
- Measurements must be based on the Hartebeeshoek94 datum (WGS84 spheroid).

#### 2.3 Geosite Setting

Recording the setting of geosites assists with data accuracy verification and helps to understand the geohydrological parameters measured. Once the geosite has been recorded and captured on a database, it is always good data management practice to check the accuracy of the geosite position. One way of checking the positional accuracy is to plot the position on a topographical map or digital elevation model (DEM) and to check that the geosite position and the topographical setting agree.

Furthermore, cognisance of the topographical setting can promote a better understanding of the geohydrological environment. For example, a geosite located in unvegetated dune sands might be associated with a groundwater system that experiences a high rate of rainfall recharge. This example implies that both the topographic setting and land cover characteristics need to be recorded. A comprehensive list of geomorphological settings is provided in Table 2.5, and land cover types in Table 2.4.

| Descriptor                                                   |
|--------------------------------------------------------------|
| Natural forest and woodland                                  |
| Natural forest                                               |
| Thicket and bushland                                         |
| Shrubland and low fynbos                                     |
| Herbland                                                     |
| Grassland                                                    |
| Forest plantations (indicate pine, wattle, eucalyptus, etc.) |
| Barren rock                                                  |
| Dongas and sheet erosion scars                               |
| Degraded <sup>1</sup> : forest and woodland                  |
| Degraded: thicket & bushland                                 |
| Degraded: grassland                                          |
| Degraded: shrubland and low fynbos                           |
| Degraded: herbland                                           |

Table 2.4Land cover classification descriptors

Standard Descriptors for Geosites

<sup>&</sup>lt;sup>1</sup> Degraded implies over-grazed, burnt, cleared for minor development or trees removed for firewood, etc.

| Descriptor                                                     |  |  |
|----------------------------------------------------------------|--|--|
| Cultivated: permanent - commercial irrigated                   |  |  |
| Cultivated: permanent – commercial dryland                     |  |  |
| Cultivated: permanent – commercial sugarcane                   |  |  |
| Cultivated: temporary – commercial irrigated                   |  |  |
| Cultivated: temporary – commercial dryland;                    |  |  |
| Cultivated: temporary semi-commercial / subsistence dryland    |  |  |
| Urban / built-up land: residential                             |  |  |
| Urban / built up land: residential (small holdings: woodland)  |  |  |
| Urban / built-up land: residential small holdings: bushland)   |  |  |
| Urban / built up land: residential (small holdings: shrubland) |  |  |
| Urban / built-up land: residential (small holdings: grassland) |  |  |
| Urban / built-up land: commercial                              |  |  |
| Urban / built-up land: industrial / transport                  |  |  |
| Mines and quarries                                             |  |  |

 Table 2.5
 Geomorphological classification descriptors

| Descriptor                               |
|------------------------------------------|
| Hill / mountain top                      |
| Steep mountain slope                     |
| Low gradient hill slope                  |
| Raised terrace                           |
| Valley floor                             |
| Riparian zone                            |
| Flat / gently undulating surface         |
| Water body (wetland, pan, river, spring) |
| Alluvial fan                             |
| Unvegetated shifting dunes               |
| Vegetated dunes                          |

There is merit in capturing land cover information associated with a geosite. The immediate benefit is that a query of the groundwater archive will immediately provide this information, adding value to the geohydrological data provided. This information can then always be correlated or updated with similar information, e.g. the ARC/CSIR land cover data, using a tool such as GIS.

#### 2.4 Geosite Selector, Method of Selection and Target Feature

This is relevant for all artificial geosites, and excludes natural features such as springs. It is particularly relevant to a borehole, since this information can assist in determining if the geosite has been selected on a scientific or non-scientific basis. This information becomes relevant when groundwater data retrieved from a database is studied and analysed also in terms of the geohydrological setting. A comprehensive list of selector descriptors is provided in Table 2.6. The category "Not applicable" will only apply to natural geosites such as springs.

| 1 4010 2.0     | Geostie belee |  |
|----------------|---------------|--|
| Descriptor     |               |  |
| Geohydrolog    | ist           |  |
| Geophysicist   |               |  |
| Earth Scientis | st            |  |
| Geotechnolo    | gist          |  |
| Civil Enginee  | er            |  |
| Owner          |               |  |
| Client         |               |  |
| Driller        |               |  |
| Diviner        |               |  |
| Not applicable | le            |  |

Table 2.6Geosite selector

If the siting of a new geosite such as a borehole has employed a scientific approach, the method(s) employed and the reason for selecting a particular site are relevant and need to be recorded. Methods used to select geosites are presented in Table 2.7. A combination of these methods is also possible.

| Descriptor                                     |  |  |
|------------------------------------------------|--|--|
| Aerial photograph interpretation               |  |  |
| Satellite image interpretation                 |  |  |
| Map interpretation                             |  |  |
| Resistivity survey:                            |  |  |
| <ul> <li>Soundings</li> </ul>                  |  |  |
| Profiling                                      |  |  |
| Magnetic survey                                |  |  |
| Electromagnetic survey:                        |  |  |
| Time domain                                    |  |  |
| Frequency domain                               |  |  |
| Seismic survey                                 |  |  |
| Gravity survey                                 |  |  |
| Controlled source audio magnetotelluric survey |  |  |
| Geological field observation                   |  |  |
| Other                                          |  |  |

Table 2.7Geosite selection methods

If a geosite has been selected taking into account a target geological feature, then this information should also be captured. A list of geological target features is provided in Table 2.8. A combination of these features is also possible.

| Descriptor                                             |  |  |
|--------------------------------------------------------|--|--|
| Favourable geological formations                       |  |  |
| Favourable geological structures:                      |  |  |
| Anticlines                                             |  |  |
| Synclines                                              |  |  |
| • Folds                                                |  |  |
| Fault zone                                             |  |  |
| Shear zone                                             |  |  |
| Weathered zones                                        |  |  |
| Fractures                                              |  |  |
| Lineaments (unknown underlying cause of the lineament) |  |  |
| Intrusive igneous features:                            |  |  |
| • Dykes                                                |  |  |
| • Sills                                                |  |  |
| Favourable hydraulic conductivities                    |  |  |
| Favourable saturated thickness                         |  |  |

Table 2.8Geological target features

#### 2.5 **Purpose of Geosite**

The intended purpose of a geosite also needs to be recorded, as this is relevant to other factors relating to the site. For example, if the geosite is a borehole that will be used for production purposes, then the appropriateness of the drilling techniques, casing diameters, casing types, development methods, etc. can be assessed. The categories of geosite purpose are listed in Table 2.9. A combination of these categories is also possible.

| Table 2.9 | Geosite | pur | pose |
|-----------|---------|-----|------|
|-----------|---------|-----|------|

| Descriptor                                              |  |
|---------------------------------------------------------|--|
| Exploration                                             |  |
| Dewatering of mines, excavations, etc.                  |  |
| Monitoring                                              |  |
| Production (abstraction):                               |  |
| • Bulk water supply                                     |  |
| Domestic water supply                                   |  |
| Commercial irrigation                                   |  |
| Domestic irrigation                                     |  |
| Stock watering                                          |  |
| <ul> <li>Nature conservation – game watering</li> </ul> |  |
| • Industrial                                            |  |
| Mining                                                  |  |
| Power generation (cooling)                              |  |
| Recharge – artificial                                   |  |

Waste disposal Standby – water supply

#### 2.6 Current Status of Geosite

The current status of a geosite is important to record, especially when it is being used for monitoring. Since the status of a geosite can change with time, this aspect must be noted every time the site is visited for a measurement. For example, if a water sample is collected from a production borehole, it should be noted whether the borehole is in fulltime production or not. If the borehole is not in use, and was only switched on for sampling purposes, then the status of the borehole might be indicated as "standby". These observations provide a measure of the representativeness of the water sample collected.

Perhaps the most important aspect of geosite status is information regarding the accessibility of the site for data collection purposes. This is catered for in Table 2.10, which lists various descriptors for describing the current status of a geosite. "Abandoned" typically describes a geosite that fails or is no longer able to meet its purpose. For example, a borehole drilled for water supply purposes fails to intersect water and drilling is discontinued. Similarly, a monitoring borehole loses this status when it experiences collapse, resulting in the data collection process being curtailed. Combinations of the descriptors listed in Table 2.10 are also possible.

| Description          | Accessible for water level measurements | Accessible for sampling |
|----------------------|-----------------------------------------|-------------------------|
| In use (functional)  | Y                                       | Y                       |
| m-use (nunctional)   | Ν                                       | Ν                       |
| Standby (production) | Y                                       | Y                       |
|                      | Ν                                       | Ν                       |
| Inaccessible         | —                                       | —                       |
| Abandoned            | —                                       | —                       |
| Destroyed            | —                                       | —                       |

Table 2.10Geosite status

#### 2.7 Geosite Sketch Map

In cases where appropriate published maps are not available, a sketch map will suffice for showing the position of a geosite. Such a map is often very useful for re-locating a geosite in the future, e.g. for monitoring purposes. It can happen that when visiting a geosite such as a borehole during the dry season it is easily visible but, when returning in the wet season, there is tall grass and the vegetation has changed, making the site difficult to locate. The sketch map can also indicate the geosite number to ensure there is no confusion of numbers when sampling, especially if the geosite itself is unmarked. The nearest town, village or farm name must be indicated on the map. The sketch map should also indicate the position, i.e. start, end and length of traverses associated with any ground-based geophysical survey(s). Additional information regarding the method(s) used, e.g. magnetic, electromagnetic, resistivity, gravity, etc. could additionally be indicated.



Figure 2.3 A simple useful sketch map for orientation and monitoring purposes

#### 2.8 Confidentiality

It is important to note whether the data associated with a geosite is to be kept confidential or if the data can be made available to the public. It may well be that DWAF, for example, is performing groundwater monitoring and sampling within a sensitive and contentious area. This data must still be recorded, but will be flagged as confidential and not available to the public without the necessary authorisation. Should these circumstances change, then the associated status can be altered to render this data accessible to any DWAF client.

- Observe and describe the geomorphological setting of the geosite.
- Note the profession/affiliation of the person who selected the geosite position.
- Determine the method used to select the geosite position.
- Describe the geological feature(s) targeted by the geosite.
- Determine the purpose and status of the geosite.
- Record the date the geosite position was determined.
- Assign a confidentiality rating to the geosite data.

#### **3 GEOSITE CONSTRUCTION DESCRIPTORS**

#### 3.1 Boreholes

Borehole construction typically comprises of four distinct operations. These are drilling, installation of casing (which could include the placing of borehole screens and filter pack(s) where and if required), grouting to provide sanitary protection and development of the borehole to ensure sediment-free operation to attain maximum yield. Two or more of these operations may be carried out simultaneously, depending on the drilling method used.

The parameters required to ensure that good quality data are recorded are discussed next in some detail. As it is envisaged that this document might also be used by persons with a poor, if any, understanding of borehole construction (e.g. district municipality staff involved in the allocation of groundwater development contracts), it includes a discussion of drilling techniques that are the most appropriate to water drilling in the relevant geohydrological environment.

#### 3.1.1 Drilling methods

Various drilling methods have been developed because geological conditions range from hard rock such as granite and dolomite to completely unconsolidated sediments such as alluvial sand and gravel. Particular drilling methods have become dominant in certain areas because they are more effective in penetrating the local rock strata and thus offer cost advantages. In many cases, however, the drilling contractor may vary the usual drilling procedure depending on the depth and diameter of the borehole, type of formation to be penetrated, sanitation requirements and principal use of the borehole. It is obvious that no single drilling method is best for all geological conditions and borehole installations. In most cases, the drilling contractor is suitably qualified to select the particular drilling method for a given set of construction parameters. Successful drilling is both an art developed from long experience and the application of good geohydrological practices.

In order to evaluate the appropriateness of the drilling method in relation to the ultimate use of the borehole and to conceptualise some of the other parameters that follow, the drilling method needs to be recorded. Borehole drilling and installation methods are so numerous that only the basic principles and some of their applications are described in the following sections. Extensive reference was made to Driscoll (1989) in compiling this material. Table 3.1 at the end of these sections, provides a complete list of drilling method descriptors.

#### 3.1.1.1 Cable tool

Developed by the Chinese, the cable tool percussion method was the earliest drilling method and has been in continuous use for about 4000 years. Cable tool drilling machines, also called percussion or "jumper" rigs (and in South Africa called a "stamper-boor") operate by repeatedly lifting and dropping a heavy string of drilling tools into the borehole. The drill bit breaks or crushes consolidated rock into small fragments, whereas it primarily loosens the material when drilling in unconsolidated formations. In both instances, the reciprocating action of the tools mixes crushed or loosened particles with water to form a slurry or sludge at the bottom of the borehole. If little or no water is present in the penetrated formation, water is added to form a slurry. Slurry accumulation increases and reduces the impact of the tools as drilling proceeds. When the penetration rate becomes unacceptably slow, slurry is removed from the borehole using a sand pump or bailer.

A full string of cable tool drilling equipment consists of five components, viz. drill bit, drill stem, drilling jars, swivel socket and cable. The cable tool bit is usually massive and heavy so as to crush and mix all types of earth materials. The drill stem gives additional weight to the bit, and its length helps to maintain a straight hole when drilling in hard rock. Drilling jars consist of a pair of linked, heat-treated steel bars. Shouldthe bit get stuck, it is freed most of the time by upward blows of the free-sliding jars. This is the primary function of the drilling jars. The swivel socket connects the string of tools to the cable. In addition, the weight of the socket supplies part of the upward energy to the jars when their use becomes necessary. The socket transmits the rotation of the cable to the tool string and bit so that new rock is cut on each down-stroke, thereby ensuring that a round, straight hole will be cut. The wire cable that carries and rotates the drilling tool is called the drill line.

Bailers, used to remove the mud or rock slurry, consist of a pipe with a check valve at the bottom. Another type of bailer is called the sand pump or suction bailer.

The characteristic up and down drilling action of a cable tool machine is imparted to the drill line and drilling tools by the walking beam. The walking beam pivots at one end while its outer end, which carries a sheave for the drill line, is moved up and down by a single or double pitman connected to a crankshaft.

Each cable tool machine has certain interdependent limits on borehole depth and diameter. For example, if a hole is relatively small in diameter, it may be drilled to comparatively great depth. In large diameter holes, the weight of the drill string and cable may become so excessive that the machine cannot function, thereby limiting borehole depth at the initial diameter.

Most boreholes completed in consolidated formations by the cable tool method are drilled "open hole," i.e. no casing is used during part or all of the drilling operation. When drilling in consolidated rock, the cable tool bit is essentially a crusher. Drilling in unconsolidated formations differs from hard rock drilling in two ways. Firstly, pipe or casing must follow the drill bit closely as the borehole is deepened, to prevent caving and to keep the borehole open. Usually the casing has to be driven by an operation similar to pile driving. Secondly, the drilling action of the bit is largely a loosening and mixing process. Actual crushing is of little importance except when a large stone or boulder is encountered.

The cable tool method has survived for thousands of years because it is reliable for a wide range of geological conditions. It may be the best, and in some cases the only, method to use in boulder deposits, all rock strata that are highly disturbed, broken, fissured or cavernous. It is also often the machine of choice when it comes to rehabilitating or refurbishing an old borehole.

#### 3.1.1.2 Direct circulation (mud rotary)

The direct rotary drilling method was developed to increase drilling speeds and to reach greater depths in softer formations. This method is commonly used in South Africa in unconsolidated sands such as the Quaternary formation along the coast. The borehole is drilled by rotating a bit, and cuttings are removed by continuous circulation of a drilling fluid as the bit penetrates the formation. The bit is attached to the lower end of a string of drill pipe, which transmits the rotating action from the rig to the bit. In the direct rotary system, drilling fluid is pumped down through the hollow drill stem and out through the ports or jets in the bit. The fluid then flows upward in the annulus (the space between the hole and drill pipe) and carries the cuttings in suspension to the surface. At the surface, the fluid is channelled into a settling pit(s) where most of the cuttings drop out. Clean fluid is pumped from the far end of the pit or from a second pit, and re-circulated down

the hole. The choice of drilling fluid is important to ensure that the borehole remains open during construction and does not collapse (see section 3.5 for more information).

The components of the rotary drilling machine are designed to serve two functions simultaneously, viz. operation of the bit and continuous circulation of the drilling fluid.

In direct circulation rotary drilling for water boreholes, the two most common types of bits used are the drag bit and the roller cone bit. Drag bits have short blades each forged to a cutting edge and faced with durable metal. Short nozzles direct jets of drilling fluid down the faces of the blades to clean and cool them. Drag bits have a shearing action and cut rapidly in sands, clays and some soft rock formations, but do not work well in coarse gravel or hard rock formations. Roller cone bits exert a crushing and chipping action, making it possible to cut harder formations. The rollers, or cutters, are manufactured with either hardened steel teeth or tungsten carbide inserts of varied shape, length and spacing, designed so that each tooth applies pressure at a different point on the bottom of the hole as the cones rotate. The tricone bit, used as an all-purpose bit in every type of formation, has three conical shaped rollers on spindles and bearings set at an angle to the axis of the bit.

#### 3.1.1.3 Reverse circulation (mud rotary)

This method is less common in South Africa, and is more likely to be used where unconsolidated formations occur in greater abundance such as Mozambique. In direct rotary drilling, the viscosity and uphole velocity of the drilling fluid are the controlling factors in removing cuttings effectively. Unless cuttings are removed, drilling cannot continue. In reverse circulation rotary drilling, flow of the drilling fluid is reversed compared with the direct rotary method. The suction end of the centrifugal pump, rather than discharge end, is connected to the swivel, kelly and drill pipe. The drilling fluid and its load of cuttings move up inside the drill pipe and are discharged by the pump into the settling pit. Centrifugal pumps with large passageways are often used to pump the drilling fluid because they can handle sand-laden fluids without excessive wear on the pump. The fluid returns to the borehole by gravity flow, continually moving down the annular space between the drill pipe and borehole wall to the bottom of the hole, picking up newly-cut material and re-enterering the drill pipe through ports in the drill bit. To prevent caving of the hole, the fluid level must be kept at ground level at all times. Many reverse rotary drilling rigs are equipped with air compressors to aid in circulating the drilling fluid. Reverse circulation drilling is the least expensive method for drilling large diameter boreholes in unconsolidated formations. It is most successful in soft sedimentary rocks and unconsolidated sand and gravel where the static water level is 5 m or less below ground level.

#### 3.1.1.4 Rotary air percussion

Two different drilling methods use air as the primary drilling fluid. These are direct rotary air and down-the-hole air hammer.

Air drilling can be done effectively only in semi-consolidated or consolidated materials (hard rock or bedrock) and is used for 90 % of South African drilling. To achieve the capability to operate in completely unconsolidated as well as consolidated formations, air rotary drilling machines can be equipped with a mud pump in addition to a high capacity air compressor. Conventional water-based drilling fluids are then used when drilling through the overlying less stable formations above the bedrock, whereas air is used once bedrock has been reached. Drillers therefore utilise various options of the drilling technology to adjust to the different physical characteristics of the geological

strata. In most instances, casing may have to be installed through the overburden to avoid caving or excessive erosion of the borehole wall after changing to air circulation.

In the rotary air method, air alone lifts the cuttings from the borehole. A large compressor provides air that is piped to the swivel hose connected to the top of the drill pipe. The air, which is forced down the drill pipe, escapes through small ports at the bottom of the drill bit, thereby lifting the cuttings and cooling the bit. The cuttings are blown out the top of the hole and collect at the surface around the borehole. Injecting a small volume of water or surfactant and water into the air system controls dust and lowers the temperature of the air so that the swivel is cooled.

The capacity of the compressor dictates the drilling depth and diameter. Removal of the cuttings is dictated by the uphole velocity of the air, which should be sufficient to lift them to the surface provided the material is ground finely enough. Roller-type and tricone rock bits can be used when drilling with air in softer rock. Button bits are used successfully in many areas with hard geological strata.

A second direct rotary method using air is called the "down-the-hole" drilling system. A bit attached to a pneumatic hammer operated at the end of the drill stem rapidly strikes the rock while the drill stem is slowly rotated. The bit is manufactured from alloy steel with heavy tungsten carbide inserts that provide the cutting or chipping surfaces. Rotation of the bit helps to ensure even penetration and, therefore, straighter holes even in extremely abrasive or resistant rock types. The air used to drive the hammer removes cuttings continuously. The air hammer is particularly efficient in hard geological strata.

#### 3.1.1.5 Jet percussion drilling

There are two methods for installing boreholes in which a high velocity stream of water is used in the drilling procedure. One of these, the jet percussion system, is generally limited to drilling 76 to 102 mm diameter bores to depths of around 60 m. Drilling tools for the jet percussion method consist of a chisel-shaped bit attached to the end of a pipe string. Holes on each side of the bit serve as nozzles for water jets that keep the bit clean and help loosen the material being drilled. Water is pumped under moderate pressure through the drill pipe and out the nozzle. The water then flows upward in the annulus, carrying the cuttings in suspension. It overflows at the ground surface and is led into one or more pits where the cuttings settle to the bottom. The water is then picked up by the suction of the pump and recirculated through the drill pipe. The discharge from the pump is delivered through a pressure hose and water swivel attached to the top of the drill pipe. The fluid circulation system is similar to that of direct rotary drilling. With water circulation maintained, the drill rods and bit are lifted and dropped in a manner similar to cable tool drilling but with shorter strokes. The chopping action of the bit in combination with the washing action of the water jet opens the hole. The drill rods are rotated by hand so that the bit cuts a round hole. Open holes can be drilled to limited depths in unconsolidated materials by the jet method if drilling fluid additives are mixed with the water to form a high viscosity drilling fluid. The viscosity is useful for lifting cuttings, but cannot be so great that it impedes the force of the jetting action at the bit.

Casing must be installed, however, and must follow the bit rather closely whenever the uncased hole tends to cave or passes through zones of high fluid loss. Jet percussion drilling is commonly used for drilling small-diameter boreholes in water-bearing sand, but can also be used to penetrate some semi-consolidated geological strata that are not too hard.

A second drilling procedure uses small diameter pipe and well points with open bottoms that can be sunk in sandy formations by the washing action of a water jet without any type of drilling tools. An improvement is to fit a non-return valve to the bottom end of the well point. This circumvents the problems of an open-ended pipe. Well points can be installed only in unconsolidated formations that are relatively free of cobbles or boulders. They can be driven by manual methods to depths of about 10 m, depending on the soil conditions. Well points driven by hammers reach depths of 15 m and more in favourable conditions. In some cases, well points are driven out the bottom of larger diameter casing when the aquifer has been reached. Well points may be set to greater depths if casing protects the screen during installation. At a predetermined depth, the casing is pulled back to expose the screen. Well point systems are widely used for exploiting sandy riverbeds and the unconsolidated dune-sands along the South African coast. Many thousands have been installed in the sands of the Cape Flats for domestic irrigation (garden watering) purposes.

#### 3.1.1.6 Boring with earth augers (manual drilling)

Earth augers of various sizes and designs are used in certain areas for drilling water bores. Three principal types are commonly used.

Large diameter bucket auger Solid stem auger Hollow stem auger.

#### <u>Bucket auger</u>

This method utilises a large diameter bucket auger to excavate earth materials. This method is referred to as rotary bucket drilling. The excavated material is collected in a cylindrical bucket that has auger-type cutting blades on the bottom. Rotary bucket drilling of water bores has found primary application in areas of clay formations that stand without caving while the hole is drilled and pipe installed to serve as casing. Drilling in sand below the water table is difficult but not impossible if the hole is kept full of water or drilling fluid. A considerable supply of water may be needed if the sand formation is quite permeable. Cobbles and boulders can cause much difficulty in the bucket augering procedure.

#### <u>Solid stem auger</u>

A second boring method uses a solid-stem auger with either a single flight (one section) or continuous flight (multiple sections). Augers having a single section of flight are commonly called earth augers, construction augers, or large diameter augers. Earth augers with diameters as large as 1.4 m have been used in shallow holes, but 356 to 610 mm single flight augers are more common. Hole depths up to 18 m have been reached in stable soil using the smaller diameter augers. This method is ineffective in loose soil or when augering below the water table.

#### <u>Hollow-stem auger</u>

The third method is the hollow-stem continuous-flight auger method. Although geotechnical and exploration drillers have been using the hollow-stem auger since the early 1950s, its use by the water borehole drilling industry has been quite limited until recently. The flights for the hollow-stem auger are welded onto larger diameter pipe with a cutter head mounted at the bottom. Unlike the solid stem method, drill rods can pass through the centre of the auger sections. A plug is inserted into the hollow centre of the cutter head to prevent soil from coming up inside the auger. This centre plug has an attached bit that helps advance the auger. The drill rod and plug connect through the auger flights to the top-head drive unit by small-diameter drill rods to insure that the drill rods and plug

Hollow-stem augers are more effective than solid-stem augers because they can be used as temporary casing to prevent caving and collapse of the borehole sides. The hollow-stem method is a fast and efficient means of drilling and completing small diameter boreholes to moderate depths. Screen and filter packs can be installed without using casing or drilling fluids. Use of the hollowstem auger method is also particularly advantageous in obtaining accurate samples. A major disadvantage of this method is the relatively high cost of hollow-stem flight augers. This method is commonly used to install monitoring boreholes in unconsolidated sands, and is especially useful when it is important not to contaminate the sub-surface with introduced drilling fluids.

#### 3.1.1.7 Hand augured tube wells

The term is not in common use in South Africa (Deverill *et al.*, 1999). A tube well is a small diameter borehole typically 60 - 170 mm diameter, sunk often by hand into a shallow aquifer. The tube wells developed as part of the Ubombo Family Wells Programme (UFWP) are hand augured to the water table using the simple but effective *Vonder Rig* produced in Harare, Zimbabwe by V&W Engineering. The equipment consists of a tripod and winch, a worktable that keeps the hole straight, drill rods and a number of auger bits and slotted PVC casing.

Table 3.1 provides a summary of the methods discussed.

#### Table 3.1Drilling method

| Descriptor                                          |  |  |
|-----------------------------------------------------|--|--|
| Cable tool                                          |  |  |
| Direct circulation (mud rotary)                     |  |  |
| Reverse circulation (mud rotary)                    |  |  |
| Rotary air percussion                               |  |  |
| Jetting:                                            |  |  |
| Percussion drilling                                 |  |  |
| Well pointing                                       |  |  |
| Boring with earth augers:                           |  |  |
| Bucket                                              |  |  |
| Solid-stem                                          |  |  |
| Hollow-stem                                         |  |  |
| Driven wells (well points), i.e. the jetting method |  |  |
| Tube wells                                          |  |  |

#### • Indicate the method used to drill the hole.

#### 3.1.2 Drilling fluids

#### 3.1.2.1 Introduction

The term "drilling fluid" in the groundwater industry refers variously to clean water, dry air, a suspension of solids or a mixture of liquid additives in water, and droplets of water dispersed in air, or a mixture of water, surfactant and colloids dispersed in air.

The technology of drilling fluids has advanced as rapidly and extensively as rotary drilling machine development. In the late 19<sup>th</sup> century water was the principal fluid used in rotary drilling. The general term "mud" originated when certain types of clays were added to form drilling fluid. Recent advances, however, have made the term "mud" somewhat obsolete. Modern mud systems are now referred to as drilling fluids because of the large number of additives that can be used to impart special properties to drilling fluids.

#### 3.1.2.2 Function of drilling fluids

Drilling fluids can perform many functions, depending on the physical and chemical conditions encountered in the borehole. The most important are the first three in the following list:

Remove cuttings. The rate at which cuttings can be removed depends on the viscosity, density and uphole velocity of the drilling fluid, and the size, shape and density of the cuttings. Ideally, the fluid should entrain the cuttings at the bit, carry them to the surface and allow them to drop into a settling pit or tank before the fluid is recirculated. Inefficient removal of cuttings can reduce the penetration rate of the drill bit, adversely affect the physical properties of the drilling fluid and increase the energy required to recirculate the drilling fluid.

Stabilise the borehole. To maintain an open borehole, the drilling fluid stabilises the borehole walls. Drilling fluid can also prevent expansion of swelling clays. To ensure that the side-wall does not collapse, the fluid level is kept at ground level, i.e. the pressure of the fluid from the borehole outwards is greater than the inward-directed pressure of groundwater.

Cool and lubricate the drill bit. Fluids circulating through the drill string cool and lubricate the bit, thereby avoiding unnecessary bit wear and reducing maintenance.

Control water losses. All water-based drilling fluid systems must control drilling fluid loss in highly permeable formations by creating a nearly impermeable clay filter cake on the borehole side-wall.

Drop cuttings into a settling pit. As the drilling fluid is circulated through the settling pit, cuttings should drop out so that they are not recirculated. The gel strength of the drilling fluid is the primary factor controlling the rate of settlement.

Facilitate acquisition of information about the borehole. Drilling fluid systems should facilitate the recovery of representative cuttings, although mixing of cuttings may still occur.

Suspend cuttings in the borehole when the drilling fluid is not being circulated. During the time that the drilling fluid is not in motion, cuttings tend to settle in the borehole. If the rate of settlement is excessive, cuttings may settle around the drill bit or stabiliser and jam the rotation of the drill string when drilling is resumed. The rate of particle settlement is controlled by the gel strength of the drilling fluid.

No single drilling fluid can fulfil all of these functions perfectly. In most cases, continuous monitoring of the drilling fluid is necessary to achieve the best results.

#### 3.1.2.3 Type of drilling fluids

Drilling fluids used in the groundwater industry include water-based and air-based systems. Water-based drilling fluids consist of the following:

#### A liquid phase.

A suspended particle phase (the colloidal phase may range from < 1 % to 50 % by volume). Cuttings entrained during drilling.

Air-based drilling fluids may consist of only a dry air phase, but often they contain some water to which a surfactant (soap) is added to produce foam. Occasionally a small amount of clay or polymer may be added to stiffen the foam. Thus, the primary drilling fluids, water and dry air, may be used alone, but a great variety of additives are available to modify their physical and chemical properties so they will perform more satisfactorily.

#### 3.1.2.4 Additives

The 3 major types of drilling fluid additives are:

Clays (commonly added to water-based systems) (rare in South Africa). Polymers (commonly added to water-based systems). Surfactants (commonly added to dry air systems).

Water with clay additives produces a high-solids drilling fluid, whereas a combination of polymeric additives and water produces a low-solids drilling fluid. Many other special additives, such as flocculants, thinning agents (dispersants), weighting materials, corrosion inhibitors, filtrate reducers, lubricants, preservatives, bactericides and lost-circulation materials, are used to further adjust the properties of drilling fluids. The exact drilling fluid system selected will depend principally on the rock formation expected and the equipment available. Remoteness of the drilling site, availability of drilling equipment and water supplies, environmental regulations and the experience of the drilling crew also play an important part in selecting the fluid system.

#### 3.1.2.5 General use of drilling fluids and additives

In general, the following combinations apply:

- Unconsolidated formations: water-based drilling fluids mainly with polymeric additives (could include clay, but this is rare in South Africa).
- Semi-consolidated: air
- Consolidated: air.

The success of any drilling fluid system depends mainly on the chemistry of the mix water, the particular additives selected and the physical and chemical characteristics of both the cuttings and the water in the formation being drilled. The acceptable types of additives for drilling of water boreholes are as follows:

- Dissolved additives.
- Surfactants, drilling detergents and foaming agents.
- Mud thinning agents and inorganic phosphates.
- Non-dissolved additives.
- Bio-degradable polymers.

- Native solids (clay).
- Bentonite.

It is important to note that these fluid additives (such as bentonite and native clays) must be used with care and ideally only under supervision of a properly trained person, due to their ability to permanently damage productive aquifer horizons.

#### Table 3.2Drilling fluid types

| Descriptor                                                                                 |  |
|--------------------------------------------------------------------------------------------|--|
| Water-based:                                                                               |  |
| Clean, fresh water                                                                         |  |
| Water with clay additives                                                                  |  |
| Water with polymeric additives                                                             |  |
| Water with clay and polymeric additives                                                    |  |
| Air-based:                                                                                 |  |
| • Dry air                                                                                  |  |
| • Mist; droplets of water entrained in the air stream                                      |  |
| • Foam; air bubbles surrounded by a film of water containing a foam-stabilising surfactant |  |
| • Stiff foam; foam containing film-strengthening materials such as polymers and bentonite  |  |
|                                                                                            |  |

#### • Record the drilling fluid used.

#### 3.1.3 Formation sampling

The rock samples and/or core gathered during the drilling operation are the geohydrologist's only means of direct access to the different geological strata intersected by the borehole. It offers the only opportunity to observe, measure and describe aspects such as degree of weathering and/or fracture spacing, fracture geometry and the other geological aspects described in chapter 4. It is thus of great importance that diligence and care be taken to execute the tasks described in this chapter rigorously.

The drilling contractor must collect samples at one (1) metre intervals and at any visible change, i.e. colour, lithology, etc. These samples necessarily represent an aggregate of the strata associated with the metre drilled, and must be laid out in a neat and orderly fashion at the drilling site for inspection by the technical supervisor. Prior to drilling, the contractor should be sure (and demonstrate this to the supervisor) of the length of the various components of the drill string to ensure that the sample depths will be recorded correct. Any change of drilling equipment after drilling has commenced should similarly be accurately measured.

To avoid inadvertent mixing of samples or disturbance by natural factors (rain, wind, animals, etc.), the drilling samples should be laid out in a sample box with separate compartments for each sample. If sample boxes are not available, the samples should be set out in a clearly demarcated area, away from site traffic of any kind. The specific interval represented by the sample (i.e. 30 - 31 m) must be indicated clearly, particularly if samples are collected for a specific feature. The drilling contractor should take every possible precaution against sample contamination due to poor circulation, caving or hole erosion.

Each water strike should be marked clearly in the sample sequence, and a water sample taken if the temperature, pH and electrical conductivity cannot be measured at the site. These water samples should be kept cool and stored in a safe place.

#### 3.1.4 Drilling diameter and depth

Borehole diameters may vary with depth for a number of reasons. To record borehole diameters it is necessary to measure the drill bit diameter between gauge buttons if air percussion or rotary drilling is being used. If augering or jetting techniques are used, the diameter of the penetrating device must be recorded. Augering tends to produce a relatively neat hole, whilst jetting produces a very variable diameter hole. Nonetheless for jetting, the inner diameter of the installed well point should be recorded rather than the indeterminate diameter of the jetted hole.

The borehole depth and associated borehole diameter are to be recorded in metres and millimetres respectively. An example is given in Table 3.3.

| Tuble 5.5 Example of botenoie diameter and depth recording |               |               |  |
|------------------------------------------------------------|---------------|---------------|--|
| Start depth (m)                                            | End depth (m) | Diameter (mm) |  |
| 0                                                          | 55            | 205           |  |
| 55                                                         | 90            | 165           |  |
| 90                                                         | 120           | 150           |  |

 Table 3.3
 Example of borehole diameter and depth recording

#### 3.1.5 Final/total depth

The depth of a borehole is usually determined by one of the following methods:

Data recorded during drilling.

Measuring the borehole depth with a plumb-line and tape measure.

Information from the driller's log.

Down-hole geophysical logging measurements of the borehole

Since the payment of the contractor is based, amongst other factors, on drilling depth, this parameter must be recorded at all times as metres below surface/ground level. When drilling with drill rods, ensure the length of the drill bit, collars, etc. is included and that the measurement is not just the summation of the drill rod lengths.

#### 3.1.6 Drilling data quality

To assist in the assessment of borehole drilling records for analysis purposes, an indication of borehole drilling data quality should be included. This indicator essentially relates to the competence and care the drilling contractor exercises whilst drilling a borehole. It provides an assessment of the following factors:

- How careful depth measurements were noted.
- How meticulous geological samples were collected and laid out and marked.
- How accurate penetration rates and blow yields were measured and recorded.
- How accurate water strikes were noted and recorded.
- How careful drilling fluid characteristics were measured and recorded.
- How careful changes in borehole diameters were noted and recorded.
This indicator is to be completed only by the technical supervisor. It is assumed that the geohydrologist has sufficient experience to make the evaluation. The available categories are given in Table 3.4.

| Table 5.4    | Drining contractors adherence to standards and quanty control levels |
|--------------|----------------------------------------------------------------------|
|              | Descriptor                                                           |
| Good adhere  | ence to standards and good quality control                           |
| Moderate ad  | herence to standards and moderate quality control                    |
| Poor adhered | nce to standards and poor quality control                            |

Table 2 / Drilling, contractors, adheren as to stor dands and sublity control lowels

#### 3.1.7 Drilling penetration rate

In conjunction with descriptions of the geological formations, drilling penetration rates provide not only valuable data about the nature of the geological strata penetrated, but also about the drill bit and drilling fluid performance. Drilling penetration rates can indicate relative hardness of geological strata and provide insight into the geohydrological characteristics of the aquifer. For example, a sudden increase in penetration rate may indicate the presence of a fracture zone that may be associated with a high hydraulic conductivity. It is important that penetration rates must always be used in conjunction with geological logging and where and when available geophysical data, to be of value in understanding the geohydrological characteristics of the aquiferat the position of the borehole. A higher penetration rate may not in all cases indicate a more fractured zone; it may just be a softer zone such as a shale layer within a sandstone sequence.

The penetration rate is the time taken per metre drilled, and must be recorded in minutes and seconds. If sudden and obvious changes in penetration rates occur, the depth at which these changes occur should also be recorded.

#### The following must be noted:

- Drill bit diameter (mm) and drilled depth (m). These recordings must be repeated if drill bit diameters change.
- Final total depth of the borehole (m).
- Indicate the level of adherence to good drilling practices.
- Record the drilling penetration rate in minutes and seconds per metre.

#### 3.1.8 Drilling contractor

The information listed in Table 3.5 regarding the drilling contractor must be captured.

| Descriptor                                                  |
|-------------------------------------------------------------|
| Name of company                                             |
| Postal and physical address of company                      |
| Telephone and fax number of company                         |
| Name of driller and professional affiliation                |
| Contact telephone number (cell and/or land line) of driller |

# 3.1.9 Drilling date

The date that drilling of a borehole started must be recorded in the international date format ccyymm-dd (e.g. the 24<sup>th</sup> January 2002 is represented as 2002-01-24). The date that drilling is completed must be recorded in the same format. The start date is the day the drill bit enters the ground, and the completion date the day when the borehole reaches its final (completion) depth. This date therefore does not include subsequent borehole development time, even if the drilling equipment is used for airlifting/flushing the borehole or for borehole treatment applied immediately after drilling is completed.

All dates must be recorded in the international date format: ccyy-mm-dd

# 3.2 Dug Wells

3.2.1 Purpose and construction methods

A dug well is a man-made pit/hole of varying sizes, through which groundwater may flow or be pumped to the surface. The pit is normally dug by hand or using an excavator or auger, lined with concrete rings, stones, brick, tile or other material to prevent collapse, and covered with a cap of wood, stone or concrete. A dug well can therefore be defined as a shallow excavation or artificially constructed cavity with a diameter of 0.5 m or larger

Some disadvantages of this type of facility are their typically shallow depth which, when combined with a lack of a continuous lining, makes them susceptible to contamination from nearby surface sources of pollution. They are also prone to drying up during periods of drought when the water table drops below the pit bottom. Table 3.6 lists the various construction method descriptors.

| Table 3.6 Dug well constructi | on method |
|-------------------------------|-----------|
|-------------------------------|-----------|

| Descriptor           |
|----------------------|
| Dug by hand          |
| Excavated by machine |
| Augered              |
|                      |

# • Indicate the method used to construct the well.

## 3.2.2 Formation sampling

The large diameter of dug wells, when compared to that of typical water supply boreholes, can facilitate the more discrete and selective collection and description of formation samples by means of the soil profiling methods commonly employed by engineering geologists. The guide to soil profiling developed by Jennings *et. al.* (1973) is promoted by the Council for Geoscience as the standard in this regard. This activity, however, necessarily requires physical access to the well by the soil profiler, and offers the opportunity to obtain representative formation samples in situ. These samples must be stored in a sample box or plastic bag labeled with the name of the soil profiler, well identifying information, sample depth and date of collection.

Standard Descriptors for Geosites

Table 3.7Formation sampling

| Descriptor                                                             |
|------------------------------------------------------------------------|
| Name of sampler/profiler                                               |
| Well identifying information, e.g. name/number and co-ordinates        |
| Date sampled/profiled                                                  |
| Type of sample:                                                        |
| Aggregate                                                              |
| Profile                                                                |
| Discrete                                                               |
| Combination of the above (define)                                      |
| Aggregate sample:                                                      |
| Sample interval depth (from _ to _ metres below surface)               |
| Sample description                                                     |
| Profiled sample:                                                       |
| <ul> <li>Horizon sampled (from _ to _ metres below surface)</li> </ul> |
| Horizon description                                                    |
| Discrete sample:                                                       |
| Sample depth (metres below surface)                                    |
| Sample description                                                     |

#### 3.2.3 Geometry of well

A dug well does not conform to standard water borehole dimensions. It can assume any diameter, although the tendency to maintain a cylindrical shape is generally followed. The geometry (diameter and depth) of the well must be recorded together with the information listed in Table 3.8.

 Table 3.8
 Geometry and general construction information

| able 5.5 Geometry and general construction in      | IIIIIation               |  |  |
|----------------------------------------------------|--------------------------|--|--|
| Descriptor                                         |                          |  |  |
| Well Constructor:                                  |                          |  |  |
| Name of company                                    |                          |  |  |
| <ul> <li>Postal and physical address</li> </ul>    |                          |  |  |
| • Telephone and fax number                         |                          |  |  |
| Name of well digger/excavator                      |                          |  |  |
| • Contact telephone number (cell and/or land line) | of well digger/excavator |  |  |
| Start and end date of construction                 |                          |  |  |
| Geometry:                                          |                          |  |  |
| • Diameter (minimum and maximum)                   |                          |  |  |
| • Depth                                            |                          |  |  |
| Covering:                                          |                          |  |  |
| • Wooden lid                                       |                          |  |  |
| Concrete lid                                       |                          |  |  |
| • Other                                            |                          |  |  |

## 3.3 Springs

## 3.3.1 Use

Pearson et. al. (2003) identify springs as potential sources of potable water for the following reasons:-

Standard Descriptors for Geosites

They generally provide good quality water.

When situated above a settlement, they can be utilised with gravity flow and without incurring energy costs.

Protected springs have low maintenance costs relative to other technologies.

Historically, almost all rural settlements in South Africa were established near springs. As a result, there are often springs located close to existing settlements.

#### 3.3.2 Origin and classification

A spring marks the position where groundwater emerges on surface. It represents the natural leakage or overflow from an aquifer through some form of opening in the ground. The yield of a spring is not so much a function of the size of the opening, as it is a measure of the transmissivity and hydrostatic head of/within the source aquifer. The position of a spring is generally associated with one or a combination of topographical, lithological and structural controls.

Rain water that infiltrates permeable sediments such as sand, may ultimately reach a relatively impermeable horizon, such as clay. The water then migrates down the slope formed by the upper surface of the impermeable horizon to where this outcrops on surface, and issues as a spring or seep of gravitational origin. Groundwater confined in permeable sediments beneath impervious confining horizons, that is under sufficient hydraulic pressure to rise to the surface through a natural breach in the confining horizon, forms a spring of non-gravitational origin.

The second tier of spring classification recognises the seasonality of the flow regime. Pearson *et. al.* (2003) defines this as either seasonal or non-seasonal, with the additional criteria of either phreatic or bounded (i.e. with boundaries) as a further classifier. This classification is set out in Table 3.9.

Finally, springs are classified according to their geomorphological and geological controls as illustrated in Figure 3.1. Depression springs are formed due to the land surface cutting the water table in permeable formations. Contact springs are due to permeable water-bearing formations overlying relatively impermeable formations. Perched water table springs occur when a water-bearing formation overlies a low permeability formation, which in turn overlies an unsaturated zone. Hard, compact formations generally give rise to springs that are more defined and localised. These springs result when a water-bearing formation is sandwiched between two relatively impermeable confining layers.

VERSION 1.1 DATE: 2004-09-30

| Classification | Description                                | Discharge regime                              |
|----------------|--------------------------------------------|-----------------------------------------------|
| Seasonal       | A shallow aquifer system with spring       | Discharges in the wet season may be           |
| phreatic       | outlets solely related to the interception | quite high (> $0.1 \text{ L/s}$ ), but highly |
|                | of the phreatic surface with the ground    | variable and strongly correlated with         |
|                | topography. These springs usually dry      | rainfall events. The discharge in the dry     |
|                | up during low rainfall seasons.            | season will usually dwindle to zero.          |
| Seasonal with  | As for seasonal phreatic, but there exist  | Same as seasonal phreatic, but with           |
| boundaries     | impervious boundaries that affect the      | greatly extended dry period discharges.       |
|                | outflow of the system. These               | Variability of discharges is still high and   |
|                | boundaries could reduce the wet season     | correlated with rainfall events. In many      |
|                | outflows by reducing the catchment         | cases these springs will continue to          |
|                | size, but will also usually extend the dry | provide water throughout the dry              |
|                | season outflows by channelling deeper      | period, even though the discharge rate        |
|                | groundwater out at the level of an         | decreases substantially.                      |
|                | impervious layer.                          |                                               |
| Non-seasonal   | These springs obtain their water from      | The outflow from these springs                |
| phreatic       | deep aquifers or from very extensive       | fluctuates to a small extent between          |
|                | shallow aquifers. As with the seasonal     | seasons, but not more that 20%.               |
|                | phreatic springs the outflow is derived    | Rainfall event peaks may occur, but the       |
|                | from the point of interception of the      | baseflow makes up at least 80% of the         |
|                | phreatic surface with the topography.      | flow. The springs provide a reliable          |
|                | However the water stored in the            | supply of water throughout the year.          |
|                | aquifer is large enough so that the        |                                               |
|                | phreatic surface does not fluctuate        |                                               |
|                | significantly between seasons or with      |                                               |
|                | rainfall events.                           |                                               |
| Non-seasonal   | Same as non-seasonal phreatic, with the    | Same as non-seasonal phreatic, but with       |
| with           | addition that the aquifer is bounded by    | even smaller variations in discharge.         |
| boundaries     | impervious layers, either horizontally or  |                                               |
|                | vertically. These boundaries will          |                                               |
|                | usually mean that the variability of flow  |                                               |
|                | is reduced further, with almost no         |                                               |
|                | difference in flow between summer and      |                                               |
|                | winter periods.                            |                                               |

Table 3.9Seasonal spring classification (after Pearson et al., 2003)

39





#### Figure 3.1 Spring classification based on geomorphological/geological controls

Standard Descriptors for Geosites

The three-tier spring classification system is summarised in Figure 3.2.



## Figure 3.2 Three-tier classification of springs

Table 3.10 presents a summary of the descriptors used to classify springs.

| Table 3.10 | Descriptors | for the | classification | of springs |
|------------|-------------|---------|----------------|------------|
|------------|-------------|---------|----------------|------------|

| Descriptor                                       |
|--------------------------------------------------|
| Tier 1 (Hydrodynamic controls):                  |
| Gravitational                                    |
| Non-gravitational                                |
| Tier 2 (Seasonality):                            |
| Seasonal phreatic                                |
| Seasonal with boundaries                         |
| Non-seasonal phreatic                            |
| <ul> <li>Non-seasonal with boundaries</li> </ul> |
| Tier 3 (Geomorphological/geological controls):   |
| Depression spring                                |
| Contact spring                                   |
| Perched spring                                   |
| Artesian spring                                  |
| Other (e.g. seeps*)                              |

\* Seeps fall under the category of wetlands (see Section 2)

#### 3.4 Lateral Collectors/Drains

#### 3.4.1 Purpose and types

A lateral collector or groundwater drain is a subsurface channel or piping system used primarily for intercepting, collecting and removing water from a shallow sol horizon or aquifer. The internet site www.ecy.wa.gov recognises the following types of lateral collector and drain.

#### 3.4.1.1 Interceptor drain

An interceptor drain is a gravel trench that is excavated into a relatively impermeable soil layer, and installed to intercept groundwater as it flows across the impermeable layer (see Figure 3.3). The trench is typically placed across a contour of a slight to moderate sloping area to intercept groundwater prior to influencing slope stability. Water carried by the trench pipe should be conveyed to a solid pipe that transfers water down the slope to an appropriate discharge point.



Figure 3.3 Schematic diagram of an interceptor drain

## 3.4.1.2 Relief drain

Relief drains (Figure 3.4) are installed similarly to interceptor drains, except that the design pattern is arranged to artificially lower the groundwater elevation in the slope soils to a specific elevation. They can also be constructed to intercept surface water drainage if placed at the surface. Typically, these drains are shallower sloped trenches draining to a collection pipe. Groundwater continues to flow below the drains, which are not typically excavated into the impermeable soil. Relief drains are usually used to prevent groundwater from daylighting on a slope face.



Figure 3.4 Schematic diagram of a relief drain

Strip drains (Figure 3.5) are thin rectangular conduits that can be placed into narrow trenches in order to minimise the degree of disturbance to the slope soils and vegetation. These drains, which serve a similar purpose as relief drains, are better suited for low-volume flows like groundwater seepage.



Figure 3.5 Schematic diagram of a strip drain

## 3.4.1.4 Agricultural drain

A subsurface agricultural drainage system removes excess soil water by lowering the groundwater level sufficiently to allow agricultural activities, such as the planting of crops to take place (see Figure 3.6). This drainage system comprises different components such as i) a drainage outlet, ii) a main drainage channel, iii) some collector drains, and iv) field or lateral drains. The main drainage channel collects run-off from one or more collector drains (typically perforated plastic pipes wrapped in some form of lining or geotextile), and discharges it via a pumping station or by gravity drainage into a river, lake or the sea. Both collectors and lateral drains can be open ditches or pipe drains. The agricultural drainage system design criteria are based on the requirements for drier soils with better accessibility and greater bearing capacity, an extension of the period in which tillage operations can take place and protection of crops from excessive soil water conditions.



Figure 3.6 Schematic diagram of an agricultural drain

# NOTE

French drains are sometimes confused with interceptor drains. However, French drains generally use large gravel without a pipe and the trench itself conveys the water across and down the slope. Consequently, the trench must be sloped. These drains must still convert trench flow to pipe flow in order to get drainage down the slope. French drains are not generally the system of choice for slope applications.

Table 3.11 lists the descriptors for types of lateral collectors/drains.

| Table 3.11 | Descriptors | for lateral | collector/ | drain type                             |
|------------|-------------|-------------|------------|----------------------------------------|
|            | <b>-</b>    |             |            | ······································ |

| Descriptor     |
|----------------|
| Type of drain: |
| Interceptor    |
| Relief         |
| Strip          |
| Agricultural   |
| Other          |

3.4.2 Construction and drainage materials (summarised from www.ecy.wa.gov)

# 3.4.2.1 Drainage pipe

Drainage pipe is available in rigid wall and flexible wall lengths. Generally, plastic pipe is used by contractors due to its cost, ease of installation and availability. The pipe sidewalls vary from thin and corrugated to thick and solid. Plastic drainage pipe is produced from different materials, the most common of which are polyvinyl chloride (PVC), polyethylene (PE) and high density polyethylene (HDPE) synthetic material. Perforated pipe allows water to enter or exit through small openings along a length of a pipe. The openings can be circular or slots. The more openings per metre of pipe, the greater the capacity of the pipe to collect water. Slotted openings have an advantage over circular holes in that they tend to reduce the amount of fine soil particles entering a drainage system.

# 3.4.2.2 Geotextile

A geotextile is a permeable fabric made from synthetic polymers. The primary functions of a geotextile in drainage applications are filtration and drainage, i.e. retaining soil while letting water pass through into the drainage collection system.

# 3.4.2.3 Drainage gravel

Drainage gravel should be rounded rock ranging in size from 20 to 40 mm in diameter. The gravel provides a uniform bedding for drainage pipes to create a consistent slope and provide free draining material adjacent to perforated pipes. Water moves through the spaces between the gravel before entering a pipe or other means of conveyance. In instances where the gravel itself must serve a filtration function, its grading should be based on that of the natural surrounding material.

Table 3.12 lists the construction details of a lateral collector/drain.

| Descriptor                                                                                |  |  |  |
|-------------------------------------------------------------------------------------------|--|--|--|
| Construction contractor:                                                                  |  |  |  |
| Name of company                                                                           |  |  |  |
| Physical and postal address of company                                                    |  |  |  |
| Telephone and fax number of company                                                       |  |  |  |
| Contractor's name                                                                         |  |  |  |
| Contractor's telephone numbers                                                            |  |  |  |
| Start and end date of construction                                                        |  |  |  |
| Drainage pipe:                                                                            |  |  |  |
| • Material                                                                                |  |  |  |
| Solid/slotted/perforated                                                                  |  |  |  |
| Geotextile material                                                                       |  |  |  |
| Gravel:                                                                                   |  |  |  |
| Size/grading of gravel                                                                    |  |  |  |
| Surface elevation                                                                         |  |  |  |
| Depth of lateral collector/drain below surface                                            |  |  |  |
| Cross-sectional area of lateral collector/drain                                           |  |  |  |
| Length of collector (in case of radial collector boreholes length and number of laterals) |  |  |  |
| Drainage/abstraction rate                                                                 |  |  |  |
| Formation sampling:                                                                       |  |  |  |
| Sample depth                                                                              |  |  |  |
| Geological description of sample                                                          |  |  |  |
| Depth of groundwater level/piezometric level                                              |  |  |  |
| • Water quality of water strike (temperature, pH and electrical conductivity)             |  |  |  |

 Table 3.12
 Construction descriptors for lateral collectors/drains

#### 3.5 Tunnels

A tunnel is a long, narrow, essentially linear, excavated underground opening the length of which greatly exceeds its width or height. Most such excavations attract the inflow of groundwater from the surrounding soil and rock and, as a consequence, are vulnerable to ground instability, erosion and flooding during construction. Drainage to a tunnel and the consequent lowering of groundwater levels in the vicinity can impact on the surrounding environment and third party assets. If poorly managed, the collection and disposal of groundwater from a tunnel may lead to instances of pollution and environmental impacts on flora, fauna and existing surface water bodies. Tunnels serve manly as a route for transporting various objects, media, materials and substances. The descriptors for tunnel use are summarised in Table 3.13.

According to Wahlstrom (1973), tunnel designs employ a shape that will prove the most stable. For example, when tunnelling in strongly stratified rock such as shale, the roof is often cut flat, taking advantage of the rock's natural tendency to break along bedding planes. For the most part, however, tunnels are excavated with roofs that are circular segments, which is the most stable geometric shape with regard to externally applied stress. Also common are tunnels cut in horseshoe shapes, which provide maximum stability in the roof section. Tunnels that convey water are normally circular.

| Table 3.13 | Tunnel use descriptors |
|------------|------------------------|
|------------|------------------------|

| Descriptor                                  |  |  |  |
|---------------------------------------------|--|--|--|
| Purpose:                                    |  |  |  |
| Transport route for traffic                 |  |  |  |
| Mining                                      |  |  |  |
| • Industrial                                |  |  |  |
| Power generation                            |  |  |  |
| Waste disposal                              |  |  |  |
| Medium transported:                         |  |  |  |
| Road traffic                                |  |  |  |
| Rail traffic                                |  |  |  |
| Pedestrian traffic                          |  |  |  |
| Services (electricity/communication cables) |  |  |  |
| Liquids                                     |  |  |  |
| • Gases                                     |  |  |  |

In addition to the shape of the tunnel section, the size is also important, as it has to be constructed in such a way as to support surrounding geological formations. The descriptors used to describe the type and geometry of tunnels are listed in Table 3.14.

# Table 3.14Tunnel type and geometry descriptors

|       | Descriptor       |
|-------|------------------|
| Shape | <u>.</u>         |
| •     | Circular         |
| •     | Rectangular      |
| ٠     | Horseshoe        |
| Geon  | netry:           |
| •     | Diameter         |
| •     | Width and height |
| •     | Length           |

# 3.6 Sinkholes

## 3.6.1 Types and Origin

Sinkholes are subsidence or collapse features that form at points of local instability associated primarily with dolomitic strata, where mildly acidic groundwater has dissolved rock such as limestone, dolomite or gypsum. They also occur in areas where intensive mining activities were or are taking place. Surface structures in the vicinity of sinkholes are at risk of structural damage unless they have been adequately designed. Since sinkholes are natural holes in the ground surface, they are inviting sites for the dumping of waste. In instances where lakes have formed in sinkholes, they are/have been used for recreational and/or water supply purposes. The following types of sinkhole, solution and subsidence features are recognised.

# 3.6.1.1 Collapse sinkhole

These are the most dramatic of the sinkhole types, forming with little warning and leaving behind a deep, steeply sided hole. The mechanism and progression of a collapse sinkhole is shown in Figure 3.7.

Standard Descriptors for Geosites

The mechanism and progression of a subsidence sinkhole is shown in Figure 3.8. Gradually subsiding sinkholes commonly form where slow dissolution takes place, mostly along joints in the karst formation.

## 3.6.1.3 Solution sinkhole

Solution sinkholes form where the overburden is absent and the karst formation is exposed at land surface.

3.6.1.4 Doline

A doline is a shallow funnel-shaped depression of the ground surface.

## 3.6.1.5 Grike

A grike is a solution fissure or vertical crack of about 0.5 m wide.

Sinkhole and subsidence features are triggered by the following circumstances: -

Excessive pumping of groundwater from dolomitc aquifers may rapidly lower the water table and cause a sudden loss of buoyant forces that stabilise the roof of cavernous openings. Changes in surface water flow and infiltration induced by human activity may also cause collapse. Most sinkholes that form suddenly occur where soil that overlies bedrock collapses into a pre-existing void.

Dewatering in an urban environment, e.g. pumping groundwater out of basements.

Leaking pipes, swimming pools, dams and taps in a karst environment.

The collapse of a void associated with underground mining activities due to an incapacity to carry the load of overlying sediments results in land subsidence that might take the form of any of the above-listed types of features. The descriptors for the classification of sinkhole and subsidence features are listed in Table 3.15.

| Descriptor                                                |  |  |  |
|-----------------------------------------------------------|--|--|--|
| Туре:                                                     |  |  |  |
| • Collapse                                                |  |  |  |
| Subsidence                                                |  |  |  |
| Solution                                                  |  |  |  |
| Doline                                                    |  |  |  |
| • Grike                                                   |  |  |  |
| Natural                                                   |  |  |  |
| Artificial                                                |  |  |  |
| Probable trigger:                                         |  |  |  |
| Abstraction of groundwater                                |  |  |  |
| <ul> <li>Infiltration of water from surface</li> </ul>    |  |  |  |
| • Losses from the water distribution and / or waste water |  |  |  |
| system                                                    |  |  |  |
| • Dewatering                                              |  |  |  |
| Underground mining activity                               |  |  |  |

Table 3.15Descriptors for sinkhole and subsidence features.

47

#### 3.6.2 Geometry of sinkhole and subsidence features

Buttrick et. al. (2001) recognise that the size of a sinkhole in a karst environment is dependent on the following factors:

- The amount of space within the formation available for development.
- Small interconnected openings in the over-burden.
- Estimated depth below ground surface to the potential throat.
- Size of the throat or potential throat.
- The estimated 'angle of draw' in the various horizons of the formation. This angle describes a cone and defines the angle of a metastable slope in which there will be movement of the dolomitic overburden.

Buttrick and Van Schalkwyk (1995) present the size classification for sinkholes in Table 3.16.

| Maximum potential development space | Maximum diameter of surface<br>manifestation (m) | Size Classification  |
|-------------------------------------|--------------------------------------------------|----------------------|
| Small potential                     | < 2                                              | Small sinkhole       |
| development space                   |                                                  |                      |
| Medium potential                    | 2 - 5                                            | Medium size sinkhole |
| development space                   |                                                  |                      |
| Large potential                     | 5 - 15                                           | Large sinkhole       |
| development space                   |                                                  | _                    |
| Very large potential                | > 15                                             | Very large sinkhole  |
| development space                   |                                                  |                      |

Table 3.16Classification of sinkhole sizes (after Buttrick and Van Schalkwyk, 1995)



No evidence of land subsidence, small- to mediumsized cavities in the rock matrix. Water from surface rock percolates through to rock, and the erosion process begins.

Cavities in limestone continue to grow larger. Note missing confining layer that allows more water to flow through to the rock matrix. Roof of the cavern is thinner, weaker.

As groundwater levels drop during the dry season or due to over-abstraction, the weight of the overburden exceeds the strength of the cavern roof, and the overburden collapses into the cavern, forming a sinkhole.

Figure 3.7 Mechanism for the formation of collapse sinkholes (from http://waterquality.ifas.ufl.edu/primer)



Figure 3.8 Mechanism for the formation of subsidence sinkholes (from http://waterquality.ifas.ufl.edu/primer)

## 3.7 Mines

A mine can be defined as an excavation in the earth from which substances such as ores and minerals are extracted. Three basic mining-related geosites have been identified, namely shafts/adits, underground mines and opencast mines (including quarries). Mines are further classified according to the extraction method employed, a listing of which is presented in Table 3.17. The final type descriptor relates to the material(s) mined.

A mine has a life cycle that consists of three distinct phases identified as the following:

- Pre-operational phase.
- Operational phase.

• Post-operational/closure phase.

Each of the above-listed phases identifies the status of a mine within its life cycle, and is associated with a start and an end date. It is also not uncommon for the extraction method to change during the operational phase of especially an underground mine. The areas encompassed by the various extraction methods is typically indicated on the mine plans.

| Descriptor            |                           | Description                                                                                                                                                                                                                                                                                  |  |  |  |
|-----------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Underground<br>mining | Bord-and-pillar<br>mining | An underground mining procedure whereby a rectangular maze<br>is mined, leaving pillars to prevent the overlying strata from<br>collapsing.                                                                                                                                                  |  |  |  |
|                       | Longwall<br>mining        | The total extraction of an underground panel of the mined<br>material, usually with a panel width in excess of 180 m, by<br>mechanised methods and causing the collapse of the strata above<br>the mined-out portion of the panel.                                                           |  |  |  |
|                       | Shortwall<br>mining       | Only conducted on a limited scale in South Africa. Shortwall<br>mining also removes all support of the overlying strata, though<br>over much smaller widths than in the case of longwall mining.                                                                                             |  |  |  |
|                       | Stooping                  | The selective removal of material pillars that have been left behind during bord-and-pillar mining.                                                                                                                                                                                          |  |  |  |
|                       | High extraction mining    | All underground coal-mining methods that remove the roof support, and which can result in the collapse of overlying strata.                                                                                                                                                                  |  |  |  |
| Opencast<br>mining    | Strip mining              | The total removal of overburden and rock above the ore seam(s) to create an open void on surface. Such mines typically exhibit a rectangular shape, most of the material is easily excavatable and the ore horizon has a sub-horizontal attitude.                                            |  |  |  |
|                       | Quarrying                 | Similar to strip mining, except that such mines typically exhibit a circular or semi-circular shape, the ore and host rock requires substantial blasting and the ore body is extensive in depth.                                                                                             |  |  |  |
| Other                 |                           | On the coastline of Namaqualand and KwaZulu Natal, beach or<br>marine alluvial deposits are worked by surface sand-stripping<br>methods, by gravel and pothole exploitation methods in shallow<br>water, and by suction dredging in deeper water to considerable<br>distances off the coast. |  |  |  |

Table 3.17Mine types and extraction methods

The descriptors that characterise a mine are listed in Table 3.18.

Table 3.18Mine descriptors

| Descriptor                                              |  |  |  |
|---------------------------------------------------------|--|--|--|
| Geometry:                                               |  |  |  |
| Shafts/adits                                            |  |  |  |
| • Co-ordinate of centre of entrance                     |  |  |  |
| 0 Length                                                |  |  |  |
| o Angle with surface                                    |  |  |  |
| Mine workings                                           |  |  |  |
| • Co-ordinate of centre point of mine                   |  |  |  |
| o Dimensions of workings (length, width, height)        |  |  |  |
| o Depth of workings (minimum and maximum below surface) |  |  |  |
| Type:                                                   |  |  |  |
| • Underground                                           |  |  |  |
| • Opencast                                              |  |  |  |
| Extraction method(s):                                   |  |  |  |
| Bord-and-pillar mining                                  |  |  |  |
| Longwall mining                                         |  |  |  |
| Shortwall mining                                        |  |  |  |
| Stoping                                                 |  |  |  |
| High extraction mining                                  |  |  |  |
| Strip mining                                            |  |  |  |
| Quarrying                                               |  |  |  |
| • Other                                                 |  |  |  |
| Status:                                                 |  |  |  |
| Pre-operational phase                                   |  |  |  |
| Operational phase                                       |  |  |  |
| Post-operational/closure phase                          |  |  |  |
| Material/commodity mined                                |  |  |  |

# 4 GEOLOGICAL DESCRIPTORS

#### 4.1 Introduction

The geological description of a geosite entails two important aspects, namely lithology and stratigraphy. The former is a broad term comprising characteristics such as colour, composition, texture, grain size, particle shape, composition and origin of the rocks, whereas stratigraphy deals with the systematic organisation of rocks of the Earth's crust. The accurate description of these characteristics provides valuable information of and insight into the groundwater environment.

# 4.2 Lithology

With regard to lithology, a distinction can be drawn between soils, unconsolidated material and hard rock strata, the latter in the form of either rock chips or core. In the description of the sample, clear and unambiguous distinction should be made between observable characteristics and interpretation. Interpretations will usually contain words such as "possibly", "probably" and "interpreted as", automatically clarifying the assessment being made.

Due to their many common elements and characteristics, soils and unconsolidated strata will be grouped together, but a distinction between core and rock chip samples will be made.

#### 4.2.1 Soil and unconsolidated strata

For soil/unconsolidated formations the descriptors colour, particle size, shape and origin are used. The following text is taken from Bruin and Brink (1994).

#### 4.2.1.1 Colour

To obtain a standardised basis for judging the colour and to take cognisance of changes in colour with changes in moisture content, it is recommended that the sample be described when wet. (A small portion of the sample is taken in the palm of the hand and sufficient water is added to create a paste).

Due to the difficult and subjective nature of the task of assigning colour descriptions, the Munsell colour chart must be used.<sup>2</sup>

#### 4.2.1.2 Particle size

The particle size is essentially described on the basis of grain size diameter. The following descriptions, based on the Wentworth and USGS classifications, are to be used.

<sup>&</sup>lt;sup>2</sup> The Munsell colour chart can be purchased from: Corstor (Pty) Ltd, PO Box 35, Kya Sand 2163. Tel: 011-462-6026, Fax: 011-462-6117

| 1 able 4.1 | Faiticle size classification                                                             |                |                    |                                         |  |
|------------|------------------------------------------------------------------------------------------|----------------|--------------------|-----------------------------------------|--|
| Descriptor | Size                                                                                     | Comments       |                    |                                         |  |
| Boulder    | 256 mm and a                                                                             | n and above    |                    |                                         |  |
| Cobble     | 64 mm to 256                                                                             | mm to 256 mm   |                    |                                         |  |
| Gravel     | Gravel                                                                                   | Size (mm)      | Description        |                                         |  |
|            | consists of                                                                              | 32 to 64       | Very coarse gravel |                                         |  |
|            | fragments of                                                                             | 16 to 32       | Coarse gravel      |                                         |  |
|            | rock between                                                                             | 8 to 16        | Medium gravel      |                                         |  |
|            | 64 mm and                                                                                | 4 to 8         | Fine gravel        |                                         |  |
|            | 211111 III SIZE.                                                                         | 2 to 4         | Very fine gravel   |                                         |  |
| Sand       | Sand consists<br>of discrete<br>particles<br>between 2.0<br>mm and<br>0.063 mm.          | Size (mm)      | Description        | Recognition                             |  |
|            |                                                                                          | 1 to 2         | Very coarse        | Grains measurable                       |  |
|            |                                                                                          | 0.5 to 1       | Coarse             | Grains clearly visible to the naked eye |  |
|            |                                                                                          | 0.25 to 0.5    | Medium             | Grains clearly visible under hand lens, |  |
|            |                                                                                          |                |                    | just visible to the naked eye           |  |
|            |                                                                                          | 0.125 to 0.25  | Fine               | Just visible as individual grains under |  |
|            |                                                                                          |                |                    | hand lens                               |  |
|            |                                                                                          | 0.063 to 0.125 | Very fine          | Individual grains cannot be seen with a |  |
|            |                                                                                          |                |                    | hand lense                              |  |
| Silt       | Silt consists of discrete particles that are smaller than 0.063 mm and larger than 0.004 |                |                    |                                         |  |
|            | mm in size. In general, silt particles are barely felt when rubbed with water on the     |                |                    |                                         |  |
|            | palm of the hand.                                                                        |                |                    |                                         |  |
| Clays      | Particle size $< 0.004$ mm and are slippery when rubbed as a thin wet smear on the       |                |                    |                                         |  |
|            | palm of hand.                                                                            |                |                    |                                         |  |

Table 4.1Particle size classification

Most natural soils or unconsolidated formations are a combination of one or more different textures. In describing such a sample, the adjective is used to denote the lesser constituent, e.g. a silty clay is a clay with some silt.

## 4.2.1.3 Sorting

The grain size distribution can be accurately described if the samples are properly analysed by drying and subjected to a sieve analysis in a soil laboratory. Alternatively, an indication of size distribution can be done in the field using a hand lens that incorporates a fractional millimetre scale such as used by the garment industry to count threads per millimetre.

#### 4.2.1.4 Particle shape

The shape of the sediment particles should also be described, as this assists in the interpretation of origin (see Figure 4.1). The categories to be used are the following.

- Well rounded
- Rounded
- Sub-rounded
- Sub-angular
- Angular.



Figure 4.1 Sedimentary particle shapes (after Bosch, 1999).

## 4.2.1.5 Lithological composition

Where possible, the composition of the sample should be given, e.g. quartz, dolomite.

#### 4.2.1.6 Origin

Where possible, the origin of the sample should be given, e.g. alluvium, residual dolomite.

#### 4.2.1.7 Order of description

The order of description of the sample is to be standardised as follows:

Colour Particle size Particle shape (including ratios) Lithological composition Origin of the sample

For example, cream coloured; 10 % fine 90 % very fine; quartzose sand; well rounded with minor shelly material.

#### Unconsolidated material

The following must be described:

- Origin of the sample
- Colour (Munsell colour chart)
- Particle size
- Particle shape (including ratios)
- Lithological composition
- Origin of the sample.

#### 4.2.1.8 Overburden thickness

The thickness of the overburden in a dolomitic environment plays an important role in the formation and size of sinkholes. The classification of overburden thickness after Wagener (1981) is summarised in Table 4.2.

| Table 4.2 Thekness of overbuilden descriptors (after wagener, 196 |               |  |  |  |
|-------------------------------------------------------------------|---------------|--|--|--|
| Descriptor                                                        | Thickness (m) |  |  |  |
| Moderately thin overburden                                        | > 3           |  |  |  |
| Moderately thick overburden                                       | 3 – 15        |  |  |  |
| Thick overburden                                                  | > 15          |  |  |  |

 Table 4.2
 Thickness of overburden descriptors (after Wagener, 1981)

#### 4.2.2 Hard rock component

The hard rock component descriptors are sub-divided according to rock chips and core samples. However, parameters generic to both components will first be described and then those unique to each. The following description sequence must be used.

- Lithological composition
- Colour
- Degree of weathering
- Fracture spacing

The moisture condition is generally not described, since a number of factors may influence the final value, e.g. the addition of water during the drilling process, samples left exposed before being sealed, desiccation during the air-flushing process, etc.

#### 4.2.2.1 Lithological composition

It is important to describe the major portion of the sample first. The subordinate portions of the sample are described using the aforementioned descriptors incorporating the quantifications shown in Table 4.3.

| Ratio         | Description                                                         |
|---------------|---------------------------------------------------------------------|
| Traces        | The subordinate amount is less than 10 % of the total sample        |
| Minor         | The subordinate amount is between 10 % and 30 % of the total sample |
| Abundant      | The subordinate amount is between 30 % and 50 % of the total sample |
| Equal amounts | The major factions occur in equal amounts                           |

Table 4.3Descriptors for sample proportions

## 4.2.2.2 Colour

To ensure that colour is representative of the rock material, only freshly broken surfaces must be examined for the description. Surfaces altered by contaminants or surface abrasion should be avoided. Due to the difficult and subjective nature of the task of assigning colour descriptions, the Munsell colour chart must be used Where a rock chip displays a secondary colour, this may be added to the predominant rock colour as an adjective, e.g. yellowish brown. Where significant, the colour could further be enhanced by using the following descriptions for further distinction:

Standard Descriptors for Geosites

lustrous, light, dull, dark and bright as described in Table 4.4. The description criteria can also be expanded and, where relevant, the qualifiers included in Table 4.4 applied.

| Composition   | Fabric (       | Colour         | Hardness   |            |
|---------------|----------------|----------------|------------|------------|
|               | Unconsolidated | Consolidated   | Qualifiers | Qualifiers |
| Quanners      | material       | material       | Quanners   | Quaimers   |
| Argillaceous  | Clayey         | Brecciated     | Bright     | Solid      |
| Arenaceous    | Coarse         | Banded         | Dark       | Hard       |
| Calcareous    | Cobbly         | Bedded         | Dull       | Soft       |
| Carbonaceous  | Fine           | Baked          | Light      | Fresh      |
| Cherty        | Gravelly       | Broken         | Lustrous   |            |
| Chloritic     | Medium         | Cemented       |            |            |
| Ferruginous   | Muddy          | Coarse grained |            |            |
| Feldspathic   | Pebbly         | Cross-bedded   |            |            |
| Clauconitic   | Sandy          | Crystalline    |            |            |
| Graphitic     | Shaly          | Consolidated   |            |            |
| Micaceous     | Shelly         | Fibrous        |            |            |
| Heavy mineral | Silty          | Fine grained   |            |            |
| bearing       |                |                |            |            |
| Phosphorite   |                | Granular       |            |            |
| bearing       |                |                |            |            |
| Peaty         |                | Interlaminated |            |            |
| Pyritic       |                | Intercalated   |            |            |
| Siliceous     |                | Jointed        |            |            |
|               |                | Laminated      |            |            |
|               |                | Massive        |            |            |
|               |                | Medium grained |            |            |
|               |                | Nodular        |            |            |
|               |                | Porphyritic    |            |            |
|               |                | Oolitic        |            |            |
|               |                | Phyllitic      |            |            |

 Table 4.4
 Additional qualifiers of unconsolidated and consolidated rock material

## 4.2.2.3 Degree of weathering

The state of weathering of the rock should be described in the broad categories defined in Table 4.5

| Description          | Surface Characteristics                                               |  |
|----------------------|-----------------------------------------------------------------------|--|
| Unweathered          | Unchanged                                                             |  |
| Slightly weathered   | Partial discolouration                                                |  |
| Medium weathered     | Partial to complete discoloration, not friable except poorly cemented |  |
|                      | rocks                                                                 |  |
| Highly weathered     | Friable and possibly pitted                                           |  |
| Completely weathered | Resembles a soil                                                      |  |

Table 4.5Degree of weathering descriptors

A discontinuity is defined as any surface across which some property of a rock mass is discontinuous. This includes fractures, bedding planes and joints. Discontinuities include three major categories, namely those related to

- the origin of the rock such as bedding, foliations, cleavage planes and flow bands,
- features resulting from tectonic rupture and effect of off-loading such as joints, faults, shearzones and fractures.

The spacing is measured normal to the inclination of the discontinuities or the various discontinuity sets. In the determination of discontinuity spacing, only natural discontinuities are included.

| Table 4.0 Discontinuity spacing descriptors |                         |  |
|---------------------------------------------|-------------------------|--|
| Descriptor                                  | Spacing (core drilling) |  |
| Very highly fractured                       | < 20 mm                 |  |
| Highly fractured                            | 20  mm - 0.2  m         |  |
| Moderately fractured                        | 0.2 –0.6 m              |  |
| Slightly fractured                          | 0.6 - 2.0  m            |  |
| Very slightly fractured                     | > 2.0 m                 |  |

Table 4.6Discontinuity spacing descriptors

The nature of percussion drilling does not allow an accurate measurement of discontinuity spacing as can be done with core. However, parameters such as penetration rate, chip size and colour can be evaluated to enable one to classify drill chips as highly fractured, moderately fractured, slightly fractured and no fracturing.

| Descriptor         | Penetration<br>Rate | Drill Chip Size      | Colour Changes                  |
|--------------------|---------------------|----------------------|---------------------------------|
| Highly fractured   | Rapid change,       | Abundant large drill | The larger chips have staining  |
|                    | hammer action       | chips and variable   | on all or most faces of the     |
|                    | can cease           | size chips           | chips, the smaller chips have   |
|                    |                     |                      | one or more stained faces.      |
| Moderately         | Noticeable          | A few large drill    | The larger chips have one or    |
| fractured          | change in drill     | chips, some medium   | more stained faces, but seldom  |
|                    | rate                | size, some normal    | all faces stained. The smaller  |
|                    |                     | size                 | chips may have one or more      |
|                    |                     |                      | stained face.                   |
| Slightly fractured | Slight change in    | Occasional medium    | The larger chips have one or    |
|                    | drill rate          | size drill chip,     | more stained faces, the smaller |
|                    |                     | mostly uniform       | chips usually have no staining. |
| No fracturing      | Uniform drill       | Uniform drill chip   | No staining is evident.         |
|                    | rate                | size                 |                                 |

Table 4.7Discontinuity descriptors – percussion drilling

## 4.2.2.5 Formation strength

The most important consideration when excavating a tunnel in a formation is the stability of the latter. The geological classification of tunnels is based on the strength (resistance to deformation) of the formation(s) intersected as described in Table 4.8, and its weathering (see Table 4.4). Igneous and metamorphic formations, in general, are more resistant to deformation and weathering than sedimentary formations.

Standard Descriptors for Geosites

| Descriptor           | Stress range (MPa) |
|----------------------|--------------------|
| Extremely soft       | 0.2–0.7            |
| Very low strength    | 0.7-7              |
| Low strength         | 7-28               |
| Moderate strength    | 28-55              |
| Medium high strength | 55-110             |
| High strength        | 110-220            |
| Very high strength   | >220               |

Table 4.8Formation strength classification (after Parker, 1996)

## 4.3 Lithostratigraphy

Two subsets of stratigraphy are distinguished here, namely lithostratigraphy and chronostratigraphy. The former is defined as "the element of stratigraphy that deals with the description and systematic organization of the Earth's crust into distinctive named units based on the lithologic character of the rocks and their sratigraphic relations". In contrast, chronostratigraphy is defined as "the branch of stratigraphy that deals with the age of strata and their time relations".

Neither of the above is a directly observable nor measurable criterion such as those in the foregoing sections. Their description is based on an in-depth knowledge of the geology of the area under investigation and should, therefore, only be undertaken by qualified and experienced geoscientists. The rock should be described both chronostratigraphically and lithologically, if possible, e.g. Lebowa Suite granite.

Appendix 3 contains codes for the litho- and chronostratigraphic units. It contains the Unit names and ranks as well as the parent unit names and ranks, and other relevant codes. These codes have been supplied by the Council for Geoscience.

Appendix 3 contains the labels used for the chronostratigraphic units as defined by the Council for Geoscience.

#### **Consolidated material**

The following must be described:

- Lithological composition
- Colour
- Degree of weathering
- Discontinuity spacing
- Subordinate descriptions (e.g. mineral size)

# 5 GEOHYDROLOGICAL DESCRIPTORS

#### 5.1 Introduction

Together with geological characteristics, certain additional geohydrological parameters need to be observed and recorded. These include the depth of the water strikes, depth to the static water level, the estimated yield and the water quality of each water strike encountered. This information, interpreted in conjunction with geological parameters as described in chapter 4, assists with developing a conceptual geohydrological model of the underlying aquifer. It also provides practical information required for optimised borehole design.

Borehole design incorporates amongst others, specifying the physical materials and dimensions for borehole casings, pumping equipment, etc. The principal objectives of good design should ensure the following for a water supply geosite.

- The highest sustainable water yield with proper protection from contamination
- Water that remains sediment-free to protect pumps and silting up of instalaltions
- A geosite that has a long life (at least 25 years or more in the case of boreholes)
- Optimum operating costs in the short and the long term.

Although geosite design may appear to be a straightforward procedure, local geohydrological conditions and practical considerations more often than not complicate the process.

Important geological and geohydrological information required for the design of efficient highyielding water supply geosites includes the following.

- Grain size analyses of unconsolidated aquifer materials and identification of mineral types if necessary
- The nature and character of the water-bearing horizons, e.g. degree of stability/instability even in the case of hard-rock aquifers
- Transmissivity and storage coefficient values for the aquifer
- Current and long-term water balance conditions in the aquifer
- Water quality (not only of the aquifer to be tapped but also that of aquifers producing water of a poorer quality and which, as a result, must be sealed off)
- Stratigraphic information concerning the aquifer and overlying sediments

## 5.2 Water Strike Depth

## 5.2.1 Unconsolidated strata

No discrete water strike depths can be observed. The top of the aquifer would either be a confining layer or, in the case of an unconfined aquifer, the static water level. The depth to the saturated zone is measured in metres from the ground surface. For auger drilling or drilling without drilling fluids, as the capillary fringe is penetrated just prior to entering the saturated zone, the unconsolidated formations become darker in colour and damp. This depth generally marks the water table in unconfined unconsolidated formations, and can be confirmed after the borehole is completed and developed by measuring the depth to the static water level (for details see section 5.4).

60

#### 5.2.2 Consolidated strata

Any water strike may be recognised by an increase in blow yields and/or a discolouration of the water. Any dramatic change in penetration rate may also be associated with a water strike. The drill cuttings (rock fragments) usually reflect fracture zones and provide insight into the size and nature of the fracturing. The depth from surface of all water strikes should be recorded in metres below ground level (to the nearest 0.5m) and the widths of the individual water-bearing horizons estimated as accurately as is possible and recorded.

With (mud) rotary drilling the yield of the various water-bearing horizons is difficult to recognise and estimate. However, the nature of the drill cuttings and thinning of the drilling fluid will provide clues as to the probable intersection of water yielding zones in hard rock aquifers.

In the case of tunnels and mines, the position of any water strike can be surveyed and expressed as a co-ordinate. If the position remains accessible, the geology associated with a water strike (typically a contact between different strata, fracture, fault or joint) can be described.

## 5.3 Water Strike Yield

Measurement of the flow of groundwater emitting from a borehole whilst it is being drilled (blow yield) gives an approximate and often conservative estimate of the yield of the borehole. Blow yields do not provide an indication of the long-term yield of either the borehole or the aquifer, and these flow rates must not be used for the selection of pumping equipment. This does not, however, negate the fact that this parameter should be recorded as it provides an insight into the potential aquifer productivity.

The blow yield may be measured regularly while drilling to ensure that any change of yield is picked up, and must be recorded with every strike encountered. Subsequent measurements represent the cumulative blow yield from which the relative yield or contribution of each water strike can be determined. This information will be valuable for test pumping design and for deciding the depth of installation of both the test and final production equipment. Since the blow yield while drilling is relatively inaccurate, it should preferably also be recorded when the drill bit is lifted half a metre off the bottom of the borehole. The blow yield can be measured in several ways:

- By estimating the flow. By its nature this method is the most inaccurate.
- By digging a furrow leading from the borehole to a small pit able to accommodate a container of known volume. The time taken to fill the container is measured and the flow rate calculated and recorded as litres per second (volumetric method).
- A more reliable approach with higher yields (typically >2 L/s) is to excavate a furrow and to place a V-notch or similar weir in it. The height of flow through the notch provides an indication of the flow rate. If the specifications for notch installation and use are not closely adhered to, the measurement accuracy will be significantly compromised.

The above-listed methods can also be employed to measure the discharge rate of magnitude 4 and lower-yielding (Table 5.1) springs. More sophisticated gauging weirs are required to measure the discharge of magnitude 3 and higher-yielding (Table 5.1) springs.

It may be substantially more difficult to determine the rate of ingress of large volumes of water associated with water strikes in a tunnel or mine. Often a best guess (or estimate) must suffice.

| Magnitude | Discharge rate (L/s) | Example                                     |
|-----------|----------------------|---------------------------------------------|
| 1         | 2800 or more         | Kuruman eye                                 |
| 2         | 280 - 2800           | Schoonspruit spring                         |
| 3         | 28-280               | The Baths at Citrusdal                      |
| 4         | 6 – 28               | Caledon thermal springs                     |
| 5         | 0.6 - 6              | Springs on farms in the Southern Free State |
| 6         | Less than 0.6        | Sixuzulu spring in the Eastern Cape         |

Table 5.1Classification of springs by discharge rate (after Meinzer, 1923)

# 5.4 Static Water Level

The static water level is the level at which the water in a borehole stands at the time of measurement. The term static water level (SWL) is used widely and is recommended in preference to the term rest water level (RWL). Since it is recognised that the water level is not static and will fluctuate (e.g. seasonally), it is of utmost importance that the date and time of the measurement plus the actual water level measurement (metres below ground level) be recorded. Any abstraction near enough to possibly influence the static water level, and the distance to this production borehole(s) and its/their operational status at the time of the measurement must also be recorded, e.g. 'Running' or 'Standing'. If these abstractions have a clear influence on the water level, the water level should be indicated as 'Affected', otherwise it should be indicated as 'Static'. If uncertain whether 'Running' pumps are affecting the water level, a control measurement can be taken after a 5 - 10 minute lapse.

The standard for the static water level measurement is in metres below a datum. The datum for water level depth measurements is the top of the borehole casing. The height of this datum above ground level (collar hight) must be measured and recorded as well. To reduce any uncertainty in the recording of static water levels, the datum height and the depth to groundwater below surface level must be recorded. The water level in many low-yielding boreholes can take a long time to recover to its true static level after the completion of drilling. Under these circumstances, the static water level must also be measured 24 hours after the completion of drilling.

All measurements are to be made in metres accurate to two decimal places (i.e. centimeters). Table 5.2 provides an example of the measurements associated with SWL measurements.

| Descriptor                                  | Measurement/Observation        |  |
|---------------------------------------------|--------------------------------|--|
| Height of casing above ground level (m)     | 0.35                           |  |
| Depth to water level from top of casing (m) | 12.77                          |  |
| Surveyed ground level elevation (mamsl)     | 243.51                         |  |
| Water level status                          | Static, Affected or Recovering |  |

 Table 5.2
 Example of measurements associated with SWL recordings

When the geographic coordinates of the geosite are determined, the altitude of the surface level must also be measured and recorded. The static water level can then be converted to an absolute elevation. This is essential for determining groundwater flow directions and calculating flow velocities. The standard reference level is mean sea level.

For an artesian borehole that flows at the ground surface, the static water level is expressed as a negative distance above the ground surface. When artesian flow is stopped or contained at the ground surface, the pressure developed is referred to as the shut-in head. For example, if a borehole has a shut-in head of 20.7 kPa at the surface, it means that the confining pressure will cause the water to rise approximately 2.07 m in a pipe extending sufficiently far above the ground surface. In

the case of a water level rising to exactly surface or datum, the value to record is 0.00 m. A qualifier (comment) to indicate that the water level is at surface must be added to avoid any confusion. In instances where no water level measurement is possible, it should be reported as 'not measured' and a short comment on the reason provided.

The water level associated with a spring is typically recorded as 0.00m under circumstances where it is seldom possible to establish the shut-in head. This necessarily sets the water level elevation equal to that of the surface elevation occupied by the spring.

In the case of tunnels and mines, it is more important to establish the static water level in the surrounding host groundwater environment. This necessarily requires the existence of facilities (typically boreholes) that intersect this environment and in which the required measurements can be made. The exception in this regard is represented by mines that are either partly or completely flooded as a result of re-watering. This is not limited to defunct mines, since even active mines may have flooded sections.

## 5.5 Water Quality

## 5.5.1 Introduction

To be able to check possible changes in the ionic balance of a water sample the most common well head measurements are the electrical conductivity (EC), temperature (T) and pH of the groundwater and thus should be measured. Other field instruments coming into use more commonly, allow for the measureing of the Redox Potential and Disolved Oxigen at the well head. It is also advisable to collect and store a water sampling from the drilling phase in case analytical results are required prior to the execution of a pumping test.

## 5.5.2 Electrical conductivity

The integrity of the EC measurement is ensured if the instrument is checked and calibrated regularly using a standard solution of EC-values in the same range as that of the groundwater to be measured. At the same time the groundwater temperature should be measured. Electrical conductivity values must be reported in milliSiemens per metre (mS/m) to an accuracy of two decimals. Table 5.3 provides EC conversion factors associated with the various reporting units.

## Table 5.3Conversion factors for electrical conductivity units (after Weaver, 1992)

| 1 Siemens per cm (1 S/cm)            | х | 100 000 | = | 1 milliSiemens per metre |
|--------------------------------------|---|---------|---|--------------------------|
| 1 milliSiemens per cm (1 mS/cm)      | х | 100     | = | 1 milliSiemens per metre |
| 1 microSiemens per cm (1 $\mu$ S/cm) | х | 0.1     | = | 1 milliSiemens per metre |
| 1 micromho per cm $(1 \mu mho/cm)$   | х | 0.1     | = | 1 milliSiemens per metre |

# 5.5.3 Temperature

In the case of thermal springs and water strikes encountered in tunnels and mines, it is necessary to measure the temperature of the groundwater. This will facilitate the thermal characterisation of the water in terms of the classification system proposed by Kent (1949) as presented in Table 5.4.

| Descriptor   | Temperature | Example                                      |
|--------------|-------------|----------------------------------------------|
| Cold         | < 20°C      | Many farm springs in the southern Free State |
| Hypothermal  | 20 – 30°C   | Florisbad                                    |
| Thermal      | 30 – 40°C   | Aliwal North                                 |
| Hyperthermal | > 40°C      | Montaqu Baths                                |

Table 5.4Spring temperature classification (after Kent, 1949)

The proper collection of a groundwater sample for this purpose is imperative to allow meaningful interpretation of analyses. For the appropriate containers and prescribed sampling methodologies, refer to (Weaver, 1992).

## 5.5.4 Sampling new boreholes

A newly drilled borehole is to be sampled, either after drilling or during test pumping, preferably at the end of development or just prior to stopping the pump. Should there be an obligation to sample each individual water strike, a period of airlifting to allow any oil to be removed should precede sample collection.

Groundwater samples collected during borehole development should be collected as near as possible to the borehole. To achieve this, a clean bucket should be placed next to the borehole to collect some of the airlifted water. At no time should samples be collected from a V-notch or similar weir or after the water has flowed over the soil surface. Borehole development is discussed in more detail in the following chapter.

# 5.5.5 Sampling during test pumping

During test pumping, samples should be collected at the end of the test if only one sample is to be collected. It is recommended, however, that samples be collected at several intervals during testing. These intervals should be every 6 hours during a 12-hour constant discharge (CD) test, every 8 hours during a 24-hour CD test, or every 12 hours for CD tests of longer duration.

5.5.6 Sampling of existing boreholes

When any existing borehole is being re-developed or re-tested, it is imperative to sample the groundwater again. Purging the hole prior to sampling is mandatory. For the prescribed sampling methodologies, refer to Weaver (1992).

# 5.6 Chemical Analysis

A detailed chemical analysis of the water obtained on completion of drilling and developing a new borehole typically comprises the following parameters with reporting units mg/L unless otherwise stated: H (pH units); electrical conductivity (mS/m); potassium; sodium; calcium; magnesium; sulphate; chloride; total alkalinity; nitrate; iron; fluoride.

In order to evaluate any chemical changes that might have occurred between the time of sampling and analysis, it is necessary to measure in the field and record the EC and pH values.

The important geohydrological details that must be recorded are:

- Water strike depth(s) (metres below datum)
- Blow yield of water strike(s) (L/s)
- SWL (depth in metres below datum). Values are positive if below surface and negative if above (artesian).
- EC (mS/m) and temperature of the water strike(s)

#### 6 GEOSITE DESIGN, DEVELOPMENT AND COMPLETION DESCRIPTORS

#### 6.1 Introduction

Standard design procedures for geosites such as water supply and monitoring boreholes involve selecting the casing diameter and material, estimating borehole depth, selecting the length, diameter and material for the screen, determining the screen slot size and choosing the completion method. Some of this information also applies to other geosites such as dug wells, lateral collectors, drains and springs. Measuring and recording this information is therefore important, since it not only provides an as-built record of the geosite for cost certification and future trouble-shooting purposes, but also facilitates the optimisation of test pumping programmes and better informs geohydrological characterisation. Imperial units of measure to describe drill bit and casing diameter are still commonly used in the drilling industry in South Africa, and are thus included in this chapter.

## 6.2 Casings

Every borehole casing consists of two elements, namely solid casing and the intake (perforated) portion. Choosing the proper casing diameter for a prospective water production borehole is important because it may significantly affect the cost of borehole construction, choice of pumping equipment and operating costs. The casing must be large enough to accommodate the appropriate size pump with enough clearance for installation and efficient operation. In the case of a monitoring borehole, the diameter and casing must be large enough to accommodate the sampling pump, but not too large as this will result in an excessive amount of water that will need to be purged before collecting the water sample.

The selection of casing material is based on factors such as water quality, borehole depth and diameter, drilling equipment and drilling procedures, local regulations and cost. The different materials used in the groundwater industry are shown in Table 6.1. The most common types used in South Africa are steel and uPVC, the latter mainly in shallower boreholes and groundwater environments hosting highly corrosive water.

| 0               |
|-----------------|
| Descriptor      |
| Steel           |
| Stainless steel |
| UPVC (plastic)  |
| Fibreglass      |
| Other           |

| Table 6.1 | Casing material |
|-----------|-----------------|
|-----------|-----------------|

#### 6.2.1 Plain casing

The size of all steel casing in South Africa is gauged on the basis of its nominal inside diameter (ID) through which a drill bit must be able to pass with little tolerance. This implies that the outside diameter (OD) increases commensurate with an increase in wall thickness, so that specifying nominal 165 mm (ID) casing with a wall thickness of 4 mm gives an OD of 173 mm, and a wall thickness of 6 mm gives an OD of 177 mm. The standard borehole casing size used in South Africa is nominal 165 mm (6.5") ID which, with a 4 mm side wall is identified as 173 mm (OD) casing in the casing manufacturing industry. Similarly, nominal 152 mm ID (6") casing with a 4 mm sidewall is identified as 160 mm steel casing in the industry. Heavier duty casing, with wall thicknesses up to 10 mm, are used under increasingly onerous borehole drilling conditions.

PVC casing, by contrast, is specified according to its OD, i.e. the OD remains fixed and the ID shrinks commensurate with an increase in wall thickness. This means that specifying 140 mm (OD) uPVC casing with a 5 mm wall thickness gives an ID of 130 mm.

When recording the dimensions of the casing with which a borehole is equipped, both the inside diameter (ID) and sidewall thickness must be measured and reported in millimeters (mm).

Casing installed in a borehole should be continuous and watertight along its full length.

#### 6.2.2 Slotted casing

Casing with slots produced by one of several methods is often used in boreholes as a screening device (refer section 6.3). Rudimentary slots may be made with a saw or cutting torch, or punched with a steel punch. Such slots are typically made on site, and important limitations thereof are the following: -

- Openings cannot be closely spaced
- Percentage open area is low
- Size of slot openings varies significantly
- Openings small enough to control fine or medium sand are difficult or impossible to produce.

Neater, cleaner and more sophisticated (efficient) slots can be made in a controlled manufacturing (factory) environment using plasma or laser cutting techniques. Such slots are much more acceptable than those made in the field. Nevertheless, slotted steel casing is not corrosion resistant, and most methods of perforation tend to hasten corrosive attack on the metal when the water is aggressive.

#### 6.3 Screens

A borehole screen is a filtering device that serves as the intake portion of boreholes constructed mainly in unconsolidated or semi-consolidated aquifers to prevent sediment from entering the borehole and to serve as a structural retainer to support the loose geological strata. In hard rock aquifers the intake portion may consist of the uncased borehole drilled into the aquifer. Some hard rock aquifers such as sandstone may deteriorate over time because high flow rates remove cement that holds the grain together, thus causing slow collapse of the borehole wall. In other cases, certain minerals may weather faster due to exposure to the atmosphere. For example, the feldspar crystals in granitic rock disintegrate under aerobic conditions. Screens are therefore often used to protect pumps for from loosened formation particles and to stabilise the aquifer materials in many consolidated strata, especially sandstone, dolomite, limestone and some granites. The need to support unstable strata associated with highly fractured/jointed zones represents another use of screens in otherwise competent consolidated strata. The importance of a proper screening cannot be overemphasised when considering the hydraulic efficiency of a well and the long-term cost to its owner. Important screen criteria and functions include:

- Criteria
- Large percentage of open area
- Non-clogging openings
- Resistance to corrosion
- Sufficient column and collapse strength

- Functions
- Easily developed
- Minimal encrustation tendency
- Low head loss through the screen
- Minimising sand pumping in all types of aquifers.

The optimum length of screen is based on the thickness of the aquifer, available drawdown and stratified nature of the aquifer. In virtually every aquifer, certain zones (horizons) will transmit more water than others. Ideally, the borehole screen must be placed opposite those zones exhibiting the greatest hydraulic conductivity. One or more of the following techniques permit determination of the most productive layers.

Interpretation of the driller's log and comments on drilling characteristics such as fluid loss, penetration rates, etc.

Geological inspection of drill cuttings (chips) or samples. The relative transmissivity of each layer is estimated from the observed coarseness, lack of silt and clay, and thickness of the layer. Sieve analysis of the different lithological sediment layers.

Laboratory hydraulic conductivity testing can be performed on relatively undisturbed samples that represent individual layers of the water-bearing formations.

Borehole geophysical logging techniques.

Each technique listed above provides useful information on the zones that should be exploited. Economic factors governing a drilling project will dictate the cost that can be incurred in determining most accurately the productive zones of the aquifer. Recommended screen lengths for four typical geohydrological situations are given below.

## 6.3.1 Homogeneous unconfined aquifer

The lower 33 to 50 % of an aquifer less than 50 m thick represents the optimum design for homogeneous unconfined aquifers. In thin aquifers, as much as 80 % of the aquifer may be screened to obtain a higher specific capacity. The screen is positioned in the lower portion of the aquifer because the upper part is dewatered during pumping. A borehole in an unconfined aquifer is therefore usually pumped such that, at maximum capacity, the pumping water level is maintained slightly above the top of the screen. Screen length selection is a compromise between specific capacity and available drawdown. The optimum drawdown is 50 % to 60 % of the unscreened zone above the top of the screen.

#### 6.3.2 Heterogeneous unconfined aquifer

Although the same basic principles outlined above apply, the screen sections must be positioned in the most permeable layers of the lowest portions of the aquifer to maximise the available drawdown. If possible, the total screen length should be approximately 33 % of the aquifer thickness.

## 6.3.3 Homogeneous confined aquifer

In this type of aquifer, 80 to 90 % of the thickness of the water-bearing sediment should be screened, assuming that the pumping water level is not expected to fall below the top of the aquifer. The maximum available drawdown for boreholes in confined aquifers should be the distance from the potentiometric surface (static water level) to the top of the aquifer. Under circumstances where the available drawdown is limited, drawing the water level down below the bottom of the upper

confining layer is unavoidable. When this occurs, the aquifer will respond like an unconfined aquifer during pumping. Screen lengths chosen according to these rules make it possible to obtain about 90 to 95 % of the specific capacity that could be obtained by screening the entire aquifer. Best results are obtained by centering the screen section in the aquifer.

6.3.4 Heterogeneous confined aquifer

From 80 to 90 % of the most permeable layers should be screened.

The length of casing and screens should be reported in metres, accurate to one decimal, as a depth below the ground surface. It is possible for a number of screen sections to be interspersed with plain casing in a borehole. An example of reporting under such circumstances is given in Table 6.2.

| Descriptor | Depth Interval |        |  |  |
|------------|----------------|--------|--|--|
| Descriptor | From (m)       | To (m) |  |  |
| Ccasing 1  | 0.0            | 15.5   |  |  |
| Screen 1   | 15.5           | 27.5   |  |  |
| Ccasing 1  | 27.5           | 37.9   |  |  |
| Sscreen 2  | 37.9           | 49.0   |  |  |
| Ccasing 1  | 49.0           | 55.0   |  |  |

 Table 6.2
 Example of information recorded when casing and screens are used jointly

When designing screens for heterogeneous formations, different slot sizes may be chosen for different sections of the borehole according to the gradation of materials in different layers. If different screen slot configurations are used at different intervals, these should be recorded. For example, the descriptor for the lower screen (Screen 2 in Table 6.2) identifies it as being different from the upper screen (Screen 1). The difference is typically described in the borehole construction record.

Screen slot openings for the same formation can differ depending on whether the borehole is naturally developed or filter packed. Either design is satisfactory and the choice for a particular borehole will depend primarily on the form of the grain size distribution curve for the aquifer materials. Coarse-grained heterogeneous formations can be developed naturally, whereas finegrained homogeneous materials are best developed using a filter pack. Borehole screen slot openings for either method are selected from a study of sieve analysis data for samples representing the water-bearing formation. The design for slot openings (and filter pack where needed) must be based on accurate samples if maximum yields and sediment-free water is to be obtained.

In a naturally developed well, the screen slot size is selected so that most of the finer formation materials near the borehole are brought into the screen and pumped from the borehole during development. This practice results in creating a zone of graded formation materials extending up to 0.5 m outward from the screen. The increased porosity and hydraulic conductivity of the graded materials reduces the drawdown near the well during pumping. In heterogeneous sediments, the typical approach is to select a slot through which 60 % of the material will pass and 40 % will be retained. If the groundwater is corrosive or there is some doubt about the reliability of the sample, the 50 % retained size should be chosen. A conservative slot opening should be used in calcareous formations.

Parameters regarding screens that should be recorded are shown in Tables 6.3 and 6.4.

| Table 6.3      | Screen materia |
|----------------|----------------|
| Des            | scriptor       |
| Steel          |                |
| Stainless stee | el             |
| Unvc           |                |

#### Table 6.4Type of opening

| Descriptor                  |  |  |  |  |
|-----------------------------|--|--|--|--|
| Continuous wedge-wire slot  |  |  |  |  |
| Machine cut slot            |  |  |  |  |
| Machine-pressed bridge slot |  |  |  |  |
| Sawn slot                   |  |  |  |  |
| Torch-cut slot              |  |  |  |  |
| Punched hole                |  |  |  |  |
| Drilled hole                |  |  |  |  |

#### The following must be recorded:

- Casing type
- Casing ID and wall thickness (mm)
- Screen material
- Screen construction
- Method used for making screen openings

#### 6.4 Filter and Gravel Packs

Filter-packed boreholes and some lateral collectors and drains are constructed with an envelope of specially graded sand or gravel that is placed around the screen to a predetermined thickness. In the case of a borehole, this takes the place of the graded zone of permeable material that is produced by the development process. Filter packs typically perform a specialist function in primary aquifers, and gravel packs are more widely used in secondary aquifers as formation stabilisers.

Commercial sand for filter packs is usually specified by the upper and lower sand size (in US mesh scale) so that 85 % of the sand retained, falls within the limit. Table 6.5 provides a list of the more common grading specifications and associated details.

| Table 0.5 Ther pack characteristics |                            |                              |                        |                              |  |
|-------------------------------------|----------------------------|------------------------------|------------------------|------------------------------|--|
| Grading<br>Specification            | 85 % Size<br>Range<br>(mm) | Coefficient of<br>Uniformity | Effective Size<br>(mm) | Optimum Slot<br>Size<br>(mm) |  |
| 4/10                                | 4.75 to 2.00               | 1.47                         | 2.48                   | 2.0                          |  |
| 7/16                                | 2.80 to 1.18               | 1.32                         | 1.42                   | 1.0                          |  |
| 12/20                               | 1.70 to 0.85               | 1.31                         | 0.90                   | 0.8                          |  |
| 16/30                               | 1.19 to 0.59               | 1.47                         | 0.62                   | 0.5                          |  |
| 25/40                               | 0.71 to 0.42               | 1.28                         | 0.46                   | 0.3                          |  |

## Table 6.5Filter pack characteristics

The relevant data that needs to be recorded in regard to filter and gravel packs is listed in Table 6.6.
| Descriptor                                | Comments                                |  |
|-------------------------------------------|-----------------------------------------|--|
| Bottom of filter pack                     | Distance from ground surface in metres  |  |
| Top of filter pack                        | Distance from ground surface in metres  |  |
| Type of filter pack material:             |                                         |  |
| Quartz                                    |                                         |  |
| Other                                     |                                         |  |
| Filter pack width (i.e. distance from the | Width measured in millimetres           |  |
| screen to the borehole wall)              |                                         |  |
| Filter pack coefficient of uniformity     | Actual measurement (should be $< 2.5$ ) |  |
| Filter pack grain size                    | Grain size measurement in millimetres.  |  |

Table 6.6Filter and gravel pack details

#### The following must be described:

- Depth to top and bottom of filter/gravel pack
- Nature of filter/gravel pack material
- Filter/gravel pack width
- Effective filter/gravel particle grain size

#### 6.4.1 Dug Well Linings

As dug wells are usually excavated by hand shovel in loose geological strata, some retaining mechanism is required. To distinguish these from casings used in borehoels and wellpoints, the term 'lining' is used. In most dug wells are lined with either stones, bricks, tiles to prevent collapse. Modrern dug wells may have other materials.

#### 6.5 Geosite Development

#### 6.5.1 Boreholes

Procedures designed to optimise borehole yield are included in the term "development". Development has two broad objectives.

- Mitigate the damage done to the formation by the drilling process so that the natural hydraulic properties are partly restored.
- Improve the basic physical characteristics of the aquifer near the borehole so that water will flow more freely into a borehole.

All new boreholes should be developed before being tested or put into production to promote the production of sediment-free groundwater at the highest possible specific capacity. The choice of development method(s) is largely controlled by the type of drilling rig on site, the drilling method employed, the geohydrological conditions and financial constraints.

#### <u>Mechanical development.</u>

Methods range from extremely simple to relatively complex requiring specialised tools, but share the common characteristic that all employ some physical activity generated within the borehole. There are no set rules as to which methods must be used for different aquifer types. The information

presented in Table 6.7 provides an indication of the range of mechanical development methods and their application in different groundwater environments.

| Method           | Equipment Required                           | Comments                                    |  |
|------------------|----------------------------------------------|---------------------------------------------|--|
| Bailing          | Cable tool rig, bailer                       | Also common for hand pump boreholes         |  |
| Surging          | Cable tool or rotary rig, surge block        | Not recommended for aquifers with clays     |  |
|                  |                                              | layers                                      |  |
| Swabbing         | Cable tool or rotary rig, swab               | Not recommended for aquifers with clay      |  |
|                  |                                              | layers                                      |  |
| Air lifting      | Air compressor                               | Most common method used in South            |  |
|                  |                                              | Africa. Effective in a variety of           |  |
|                  |                                              | environments.                               |  |
| Pumping          | Any rig (including jetting, manual drilling) | Can be used by jetting rigs or for manually |  |
|                  | with pump                                    | drilled wells, by a power or hand operated  |  |
|                  |                                              | pump.                                       |  |
| Backwashing, air | Any rig with air compressor or borehole      | Creates a surging action without requiring  |  |
| surging          | pump.                                        | surge blocks or special tools               |  |
| Air lift pumping | Any rig with air compressor, air lift        | Effective for boreholes in sandstone        |  |
| / surging        | equipment with valve                         | aquifers                                    |  |
| Surging/air lift | Cable tool rig, air compressor, isolation    | Very effective in unconsolidated aquifers;  |  |
| pumping          | tool                                         | only for screened boreholes                 |  |
| Jetting (air)    | Rotary, air compressor, jetting tool         | Best with wire wrap screens; only for       |  |
|                  |                                              | screened boreholes                          |  |
| Jetting/Air lift | Rotary, mud pump, jetting tool, air          | Best with wire wrap screens; only for       |  |
| pumping          | compressor                                   | screened boreholes                          |  |
| Jetting (water)  | Rotary, mud pump, jetting tool               | Best with wire wrap screens; only for       |  |
|                  |                                              | screened boreholes                          |  |
| Hydrofracturing  | Specialised equipment incorporating an air   | Open/uncased boreholes penetrating          |  |
|                  | compressor and inflatable single or double   | e conducive low-yielding secondary          |  |
|                  | packers, amongst others.                     | aquifers.                                   |  |

Table 6.7Mechanical borehole development methods and application

# <u>Chemical development</u>

This activity employs a variety of chemicals. The most common additive is polyphosphate. Although less common, some aquifers may respond well to certain acid treatments which may open up fractures or dissolve cements. Acid is also sometimes used to break down organic drilling mud so as to aid mechanical development. Results are often improved if chemical methods are used in conjunction with mechanical development methods.

Polyphosphates as well as surfactants (detergents) can assist mechanical development by dispersing and separating clay particles, which are then removed more easily from the borehole. Common forms of polyphosphate are sodium acid pyrophosphate, tetrasodium pyrophosphate, sodium hexametaphosphate and sodium tripolyphosphate. These are generally supplied in crystalline form. Surfactants are used at low concentrations (250 to 500 mg/L), and enhance the dispersing efficiency of polyphosphates in removing silt and clay. Acid treatment may also be enhanced when used in conjunction with a surfactant. Caution: Sulfuric acid must never be used, since it combines with calcium to form insoluble calcium sulphate that will clog the borehole permanently.

Acid treatment is primarily effective in limestone and dolomite aquifers, or sedimentary formations that are cemented by calcium carbonate. During treatment with acid, the carbonate minerals are

dissolved, thereby opening up fractures and connecting voids and fissures to increase the hydraulic conductivity in the vicinity of the borehole.

A list of chemical development additives is presented in Table 6.8. Whatever borehole development method is used, it is required that the duration of the development be recorded in hours and minutes (hh:mm).

| Table 6.8         Chemical borehole development additives |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| Descriptor     |  |  |
|----------------|--|--|
| Surfactant     |  |  |
| Polyphosphates |  |  |
| Acid treatment |  |  |
| Other          |  |  |

The following must be described with respect to borehole development:

- Method used for borehole development
- Duration of borehole development (hh:mm)
- Chemicals or chemical additives used during development.

# 6.5.2 Springs

The material presented in this subsection is summarised from Pearson et. al. (2003). Two basic principles need to be followed when developing springs: -

Keep the spring flowing freely. Obstructions can lead to water damming up and this can result in groundwater finding easier alternative routes to the surface, causing the original spring to stop flowing.

Protect the water supply from contamination. The objective of spring development is to collect the flowing water underground to protect it from surface contamination, and store it in a reservoir. The appropriate development method depends on the type of spring.

The methods generally used to develop and protect springs in South Africa are discussed briefly in the following subsections. Pearson *et al.* (2003) provides a comprehensive discussion on spring development.

# <u>The spring box</u>

This entails the construction of two chambers, viz. the intake chamber and the sedimentation chamber. These chambers are separated by a honeycomb wall that allows free flow of water (see Figure 6.1). The intake chamber is filled with a filter pack of graded washed stone. The floor of the intake chamber must have a slope of 1 to 2%. The sedimentation chamber is where sand particles carried in spring water can settle out of the water. A retention time of between 5 and 30 minutes should be used for the sizing of this chamber. Coarser materials require less than a minute to settle, however approximately 30 minutes is needed for silt particles. Since a scour is needed at the low point of the chamber to remove particles, the chamber floor must fall with a slope of at least 3% to the scour outlet. The outlet and overflow pipes are oversized to accommodate the maximum possible flow. A concrete roof must cover the intake chamber and the sediment chamber. A manhole must be situated in the roof of the sediment chamber to allow inspection and cleaning of this chamber.



Figure 6.1 Spring box development (taken from Pearson *et al.*, 2003)

6.5.3 The spring catchment

There are two main differences between the spring catchment (Figure 6.2) and the spring box type of development.

The spring is excavated further into the hillside. After construction is complete, the ground above the intake chamber is backfilled.

The intake and sedimentation chambers are built as two separate structures, with the intake chamber located at the source.



Figure 6.2 Spring catchment development (taken from Jennings, 2003)

#### 6.5.4 Artesian spring development

Artesian spring development requires a watertight construction surrounding the source (Figure 6.3).



Figure 6.3 Artesian spring development (taken from Pearson et al., 2003)

Table 6.9 lists the descriptors that can be used to document the information associated with the development of a spring.

| Descriptor                                                             |  |  |
|------------------------------------------------------------------------|--|--|
| Start and end date of spring development                               |  |  |
| Method of development:                                                 |  |  |
| Spring box                                                             |  |  |
| Spring catchment                                                       |  |  |
| • Artesian                                                             |  |  |
| • Other                                                                |  |  |
| Spring box method:                                                     |  |  |
| Dimensions of intake chamber                                           |  |  |
| Slope of intake chamber floor                                          |  |  |
| Floor material used for intake chamber                                 |  |  |
| Type of filter pack used in intake chamber                             |  |  |
| Dimensions of sedimentation chamber                                    |  |  |
| Slope of sedimentation chamber floor                                   |  |  |
| Floor material used for sedimentation chamber                          |  |  |
| <ul> <li>Scour, outlet and overflow pipe dimensions</li> </ul>         |  |  |
| • Pipe material (e.g. uPVC, galvanised steel)                          |  |  |
| Position of pipes                                                      |  |  |
| Size and position of man hole                                          |  |  |
| <ul> <li>Distance between intake and sedimentation chamber*</li> </ul> |  |  |
| Thickness of backfill*                                                 |  |  |
| Artesian method:                                                       |  |  |
| Dimensions of construction                                             |  |  |
| Construction materials                                                 |  |  |
| <ul> <li>Position of outlet and overflow pipes</li> </ul>              |  |  |
| <ul> <li>Pipe material (eg uPVC, galvanised steel)</li> </ul>          |  |  |
| Outlet and overflow pipe dimensions                                    |  |  |
| *Only in the case of spring catchments                                 |  |  |

Table 6.9Spring development descriptors

# 7 GEOSITE AND AQUIFER TESTING DETAILS

# 7.1 Introduction

Test pumping is performed mainly on boreholes, and only seldom on dug wells. It is carried out to meet two main objectives:

Establish borehole yield potential, providing information on the optimum yield and hydraulic performance of individual water supply boreholes.

Establish aquifer yield potential, providing information on the hydraulic characteristics of the aquifer to determine the supply potential and sustainable yield of the groundwater system and characterise its flow pattern.

Analysis of test pumping data requires an appreciation of all the factors that can affect the drawdown. This appreciation comes mainly from a sound understanding of the aquifer, theory of groundwater movement and the practical aspects of conducting a pumping test. The analyst must be able to visualise the physical nature of the aquifer and how it deviates from the basic assumptions on which the various equations that describe the flow of groundwater under different circumstances to a pumping borehole are based. The limitations of these equations must always be kept in mind when analysing test pumping data. Difficulties experienced with analysing test pumping data, however, most commonly occur because of errors made in conducting the test or discrepancies in the recording of appropriate parameters. Test pumping standards should always be adhered to. These have been set out in the SANS (2003) document 10299-4 titled "Development, maintenance and management of groundwater resources — Part 4: Test-pumping of water boreholes".

# 7.2 Types of Test Pumping

Test pumping entails pumping a borehole at a known rate and recording the water level (and therefore the drawdown) in the pumped borehole as well as in any nearby observation borehole(s) at specific time intervals. Information derived from these measurements is applied in appropriate flow equations to calculate various hydraulic parameters. These parameters, together with a qualitative assessment of discharge-drawdown characteristics, are used in determining the sustainable yield of borehole(s) and the aquifer. In some cases, numerical modeling methods may also be effective in the analysis and interpretation of test pumping data. The parameters that need to be recorded and stored for the different types of pumping tests are explained in later paragraphs.

7.2.1 Step discharge (SD) test

This is often the first test carried out in a test pumping programme. It provides information on which the performance, measured in terms of hydraulic efficiency, of a borehole can be determined. It also assists in determining an appropriate pumping rate for a constant discharge test. This test is typically run for a minimum of 60 minutes per step, and a minimum of three steps is required to effect analysis of the data. Although the names 'step test' or 'step discharge test' is commonly used, technically the correct name is a 'Borehole Test'

### 7.2.2 Constant discharge (CD) test

This test is used to determine how much water an aquifer can yield on a long-term basis. The aquifer parameters transmissivity (T) and storativity (S) are determined from an analysis of this test data. The constant discharge test is carried out for the lengths of time given in Table 7.1 or as

required by the project geohydrologist. Although the name 'constant yield test' is commonly used, technically the correct name is an 'Aquifer Test'

### 7.2.3 Recovery test

This entails the measurement of the recovering water level in the borehole after the pump is switched off. In the case of a step discharge test, recovery readings are collected after the last step of the test. Recovery measurements are obligatory under all circumstances of test pumping.

### 7.2.4 Extended step discharge test

Designed for application under circumstances where the expense of a constant discharge test is not warranted, but more information about the aquifer is needed than a step discharge test alone can provide, this test combines elements of the step discharge and the constant discharge test. The extended step discharge test is typically performed on boreholes that are intended to provide water for livestock or domestic use, or for boreholes that will be fitted with hand pumps. It can also be applied under circumstances where a lot of information is available for the aquifer and parameters only need to be verified.

#### 7.2.5 Other tests

### 7.2.5.1 Interference test

This is not very common, and is carried out mainly on two or more boreholes in a well field when it is suspected that the drawdown patterns of boreholes will interfere with each other. The participating boreholes are pumped simultaneously at a known rate and the drawdown in the pumped and any observation holes is recorded.

### 7.2.5.2 Slug test

This is not a pumping test *per se*, and is normally performed on very low yielding boreholes. In this test a volume of water is either introduced to, removed from or displaced in the borehole, and the subsequent water level rise or decline measured/recorded and interpreted for an indication of aquifer transmissivity. Rudolph *et al* (1992) provide a detailed discussion regarding the use and interpretation of slug tests.

### 7.2.5.3 Calibration test

This is an abbreviated version of a step discharge test. A calibration test often validates or negates the need for further more comprehensive test pumping of whatever type.

### 7.3 Choice and Duration of Test

The type of test and its duration are selected to suit the level of water supply reliability required, which is a function of the water user's dependence on the borehole(s) and of the consequences (usually financial) of borehole failure (Weaver, 1995 and SANS, 2003). Thus, a borehole for watering livestock needs a much shorter duration test than a borehole for irrigation or industrial use. Table 7.1 gives recommendations regarding the type of test and its duration for various types of water use. These are minimum requirements and can be altered, if required, to suit a particular situation or to satisfy the requirements of the project geohydrologist.

| Water Use Application                                       | Type of Test | Duration            |  |
|-------------------------------------------------------------|--------------|---------------------|--|
| Livestock or domestic                                       | Extended SD  | 4 x 1 hour          |  |
| Livestock of domestic                                       | Extended 5D  | 6 hours             |  |
| Hend nump                                                   | Extended SD  | 4 x 1 hour          |  |
|                                                             | Extended 5D  | 6 hours             |  |
| Irrigation                                                  | SD           | 4 x 1 hour          |  |
| (Low cost consequence if failure occurs)                    | CD           | 24 hours            |  |
| Irrigation                                                  | SD           | 4 x 1 hour          |  |
| (High cost consequence if failure occurs)                   | CD           | 48 hours or more    |  |
| Engine driven europe for europy village water supply        | SD           | 4 x 1 hour          |  |
| Engine-univen pump for fural vinage water supply            | CD           | 48 hours            |  |
| Town / site water supply                                    | SD           | 4 x 1 hour          |  |
| Town/ city water supply                                     | CD           | 72 hours or more    |  |
| Factory                                                     | SD           | 4 x 1 hour          |  |
| (Water supply not critical to production)                   | CD           | 48 hours            |  |
| Factory                                                     | SD           | 4 x 1 hour          |  |
| (Water supply critical to production)                       | CD           | 100 hours or more   |  |
| Down station and similar water user                         | SD           | 4 x 1 hour          |  |
| rower station and similar water user                        | CD           | 48 hours to 30 days |  |
| Key: CD = constant discharge test; SD = step discharge test |              |                     |  |

Table 7.1Types of borehole test and their minimum duration (Weaver 1995, SABS 1998)

Table 7.2 summarises the basic information that needs to be documented in order to characterise the type of hydraulic test.

# Table 7.2Borehole test descriptors

| Descriptor                                             |  |  |
|--------------------------------------------------------|--|--|
| Type of test:                                          |  |  |
| Constant discharge test                                |  |  |
| • Recovery test                                        |  |  |
| • Step discharge test/Multi-rate test/Calibration test |  |  |
| • Slug test                                            |  |  |
| • Interference test                                    |  |  |
| Constant rate discharge and interference tests:        |  |  |
| • Distance to observation boreholes/wells              |  |  |
| • Pump inlet depth(s)                                  |  |  |
| • Discharge rate(s)                                    |  |  |
| • Time and change in water level (drawdown)            |  |  |
| Recovery test:                                         |  |  |
| - Time and change in water level (recovery)            |  |  |
| Step discharge/Multi-rate/Calibration tests:           |  |  |
| • Duration of step                                     |  |  |
| • Discharge rate of associated step                    |  |  |
| • Number of steps                                      |  |  |
| • Time and change in water levels                      |  |  |
| • Distance to observation boreholes/wells              |  |  |
| Slug test:                                             |  |  |

Standard Descriptors for Geosites

78

| Descriptor |                                 |  |
|------------|---------------------------------|--|
| ٠          | Volume of slug                  |  |
| •          | Time and change in water levels |  |

### 7.4 Data Collection

In order to effectively analyse the various features of a borehole, the data listed in Table 7.3 must be collected during test pumping. In addition, information pertaining to the test pumping contractor and the equipment used must also be captured. This includes the length of discharge hose used and where the water is discharged, e.g. into the veld or into a stream, etc. Further, observations such as discoloration of the water during testing, the information associated with aborted tests, etc. must also be captured.

| Descriptor                                  | Units of Measure                                    |
|---------------------------------------------|-----------------------------------------------------|
| Start date and time of the test             | ccyy-mm-dd and hh:mm                                |
| Water level measurement or drawdown +       | Meters below datum or static water level. Time      |
| time or elapsed time                        | interval as above or mm for elapsed time.           |
| Rate of discharge + date and time of each   | Litres per second. Date and time as above.          |
| measurement                                 |                                                     |
| Static water level + date and time          | Metres below ground level (accurate to 2 decimals). |
| Depth of the borehole/dug well + date of    | Metres (accurate to 2 decimals).                    |
| measurement                                 |                                                     |
| Distance between pumped borehole/dug        | Metres measured between borehole/dug well centres   |
| well and each observation borehole/well (if | (accurate to 1 decimal).                            |
| applicable)                                 |                                                     |
| Depth of pump inlet                         | Metres below ground level (accurate to 1 decimal).  |
| Depth at which water was struck (already    | Metres below ground level (accurate to 1 decimal).  |
| recorded)                                   |                                                     |
| Diameter of the borehole/dug well at        | Millimetres (accurate to 3 decimals).               |
| surface (already recorded)                  |                                                     |
| Diameter of the borehole/dug well at the    | Millimetres (accurate to 3 decimals).               |
| pump inlet depth (already recorded)         |                                                     |
| Measurement of any rainfall that occurs     | Millimetres and dates (ccyy-mm-dd)                  |
| during the test period                      |                                                     |
| Final recovered water level                 | Metres below ground level (accurate to 2 decimals). |
| Time after pumping stopped for the final    | (hh:mm)                                             |
| recovered water level reading               |                                                     |
| Distance to all the respective observation  | Meters                                              |
| boreholes and their respective referneces   |                                                     |

Table 7.3Data and associated units of measurement for a discharge test recording

# 7.5 Data Analysis

There are many techniques for analysing test pumping data, but these will not to be discussed here. Each of these methods has a set of conditions under which they apply. These are described in detail in Kruseman and de Ridder (1991). The FC-method (Van Tonder and Xu, 1999) is a recent spreadsheet-based technique developed locally.

Whatever the differences between the various methods, they all share the single common requirement that a proper understanding of the conceptual geohydrology is needed in order to decide which analytical method(s) is appropriate for the specific groundwater system. The ultimate objective of these analyses is to determine the aquifer transmissivity value and, if observation borehole data are available, the aquifer storage coefficient (or storativity). The method (e.g. Theis, Cooper-Jacob, FC, etc.) used and the values obtained must be recorded. Decriptors in this regard are given in Table 7.4.

| Descriptor          | Unit of Measure     |
|---------------------|---------------------|
| Analysis method     | Name                |
| Specific yield      | 0/0                 |
| Storage coefficient | Dimensionless       |
| Transmissivity      | m <sup>2</sup> /day |
| Leakage factor      | Dimensionless       |

 Table 7.4
 Test pumping data analysis results and units of measure

Management recommendations made as a result of the test pumping data analysis are included in Chapter 9 of this document.

|     | The following must be recorded when carrying out a pumping test: |
|-----|------------------------------------------------------------------|
| • : | Start date and time of the test (ccyy.mm.dd and hh.mm)           |
| • ] | Depth of the borehole (m)                                        |
| • ] | Distance to observations holes (m)                               |
| • ] | Pump inlet depth (m)                                             |
| • ( | Groundwater features such as strike depths, fracturing           |
| • ] | Borehole diameters (mm)                                          |
| •   | Static water level (m)                                           |
| • ] | Pumping rate (L/s)                                               |
| • ′ | Time and drawdown                                                |
| • ' | Time and recovery                                                |
| •   | Specific yield, transmissivity (if analysed)                     |

• Data analysis method(s) applied

# 8 IN-SITU GEOPHYSICAL LOGGING

Inspections carried out inside a borehole are sometimes required to obtain more detailed information about its construction and the geological/geohydrological environment. Such inspections may take the form of geophysical logging (Howard, 1990) that provides information on the various properties of the natural rock(s) intersected by a borehole. Such information typically derives from an interpretation of the geophysical data. Mechanical and visual tools (e.g. caliper arms, CCTV cameras) provide a more direct inspection method yielding information on fracture/joint zones, borehole diameter, etc. Cross-borehole correlation can provide more comprehensive information about the geohydrological makeup of a wellfield (Telford *et al.*, 1990). In addition, geophysical logging can assist in contamination studies (Daniels and Keys, 1991). If drilling mud has been used in the sinking of the borehole, then it is advisable to develop the borehole as fully as possible prior to logging. The types of geophysical logging technique, their application and the type of data that can be obtained are listed in Table 8.1.

| Method                                            | Application                                                                                                             | Data Collected                                 | Applicable in a<br>Cased Borehole |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------|
| Caliper log                                       | Location of collapse and fracture zones                                                                                 | Diameter of<br>borehole, width of<br>fractures | Yes                               |
| Resistivity<br>(single point,<br>normal, lateral) | Lithological interpretation (i.e. clay-<br>sand contacts);<br>water quality (TDS); porosity                             | Resistivity of the formation                   | No                                |
| Induction<br>(conductivity<br>logs)               | Lithology, porosity, water quality                                                                                      | Conductivity of the formation                  | No                                |
| Spontaneous<br>potential                          | Lithological contacts; permeability,<br>water quality (formation water<br>resistivity)                                  | Natural electric potential                     | Yes                               |
| Gamma                                             | Lithological interpretation<br>(primarily clay-sand)                                                                    | Natural radioactivity                          | Yes                               |
| Gamma-<br>gamma<br>(density)                      | Bulk density of formation; porosity                                                                                     | Backscatter radiation from source              | Yes                               |
| Neutron                                           | Total porosity under saturated conditions; lithology                                                                    | Backscatter neutrons from source               | Yes                               |
| Temperature                                       | Vertical flow conditions                                                                                                | Temperature                                    | Yes                               |
| Acoustic<br>(sonic)<br>interhole<br>tomography    | Interpretation of fracture patterns,<br>perched water tables, quality of<br>casing and grouting; porosity;<br>lithology | Attenuation signal<br>from acoustic source     | Yes                               |
| CCTV/<br>Camera                                   | Inspection of fractures, casing weld<br>joints, perforations,<br>clogging/incrustation, etc.                            | Video record                                   | Yes                               |

Table 8.1Borehole logging techniques (modified after Groundwater Consulting, 2000)

Every geophysical logging method has limitations and distortions and a combination of methods should be used to constrain the interpretation. The interpretation should be done by a trained geoscientist who has all relevant information at his disposal (Telford *et al.*, 1990). In terms of standard descriptors, it is required that the type(s) of method used as well as contact particulars of

Standard Descriptors for Geosites

the person and company performing the logging be recorded.

Table 8.2 lists the more common methods.

| Descriptor                                  |
|---------------------------------------------|
| Caliper log                                 |
| Resistivity (single point, normal, lateral) |
| Spontaneous potential                       |
| Gamma                                       |
| Gamma-gamma (density)                       |
| Neutron                                     |
| Temperature                                 |
| Acoustic (sonic)                            |
| CCTV/Camera                                 |
| Logging company                             |
| Logging company telephone number            |
| Person responsible for the logging          |
| Report identification                       |

Table 8.2Borehole logging descriptors

Although the actual measurements are not stored at present, the availability of such data must be known. In future, if industry demands it, the actual data (i.e. depth and value/measurement) will be stored in electronic/digital format together with the recommendations arising from their interpretation.

The following must be recorded:

- Name and contact details of logging company
- Name and contact details of the person carrying out the logging
- Type of logging performed
- Actual depth-related measurement values currently optional
- Relevant observations and recommendations

### 9 OPERATIONAL MANAGEMENT AND INSTALLED EQUIPMENT

### 9.1 Introduction

Ideally, an assessment of all relevant data recorded and information gleaned through various appropriate and suitable interpretations leads to recommendations regarding the sustainable utilisation and monitoring of either the borehole or the groundwater system that it exploits.

# 9.2 Abstraction Recommendations

The standards in this chapter address the recommendations for production pumping that are applicable to single boreholes due to be fitted with either hand pumps or motorised pumping equipment. These recommendations typically focus on suitable pumping equipment and the pump installation depth, appropriate duration of pumping (pumping or duty schedule) as hours per day required to ensure a sustainable daily abstraction and the target groundwater quality.

Borehole abstraction recommendations made without the benefit of test pumping data and analysis will have a very low level of confidence. An example of such recommendations are those based on blow yields measured during drilling operations. The scientific execution of a test pumping exercise, however, provides a wealth of information on the basis of which considered and sound recommendations regarding the responsible long term utilisation of the tested borehole and its supporting groundwater system can be made. A list of typical management recommendations and associated information is provided in Table 9.1.

| Descriptor                                           | Unit of Measure          |  |  |
|------------------------------------------------------|--------------------------|--|--|
| Pumping rate                                         | $m^3/d$                  |  |  |
| Abstraction duration (duty cycle)                    | Hours per day            |  |  |
| Recovery period (if applicable)                      | Hours per day            |  |  |
| Production pump installation depth                   | Metres below surface     |  |  |
| Maximum allowable water level drawdown               | Metres below surface     |  |  |
| Target water quality range (electrical conductivity) | mS/m                     |  |  |
| Extent of a borehole protection zone – up gradient   | Metres from the borehole |  |  |
| Extent of a borehole protection zone – down gradient | Metres from the borehole |  |  |

 Table 9.1
 Production borehole operational recommendations

# 9.3 Monitoring Recommendations

It is very important to monitor the performance of a production borehole for at least a year after abstraction has started. Recommendations in this regard should also be stipulated. Typical monitoring recommendations are listed in Table 9.2.

| Table 7.2 Monitoring recommendation       | 13                               |
|-------------------------------------------|----------------------------------|
| Descriptor                                | Unit of Measure                  |
| Borehole water levels (whilst pumping)    | Daily/monthly/quarterly/annually |
| Period that monitoring is to be conducted | ccyy-mm-dd to ccyy-mm-dd         |
| Daily abstraction rate                    | Yes / no                         |
| Pumping hours per day                     | Yes / no                         |
| Water quality (EC) and specific analysis  | Specify parameters               |
| Rainfall                                  | Daily/monthly/quarterly/annually |

Table 9.2Monitoring recommendations

The recording of actual monitoring results is discussed in Chapter 10.

### 9.4 Installed Equipment

An appropriate pump and associated pumping equipment is selected on the basis of the following information.

Borehole information including the depth and design (casing, screens, etc.). Recommendations by the geohydrologist on sustainable yield, pumping duration, pumping schedule, depth of installation and expected pumping water level. Altitude of the top of the borehole casing (mamsl). Altitude of the location (end point) to which the water is to be pumped (mamsl).

A variety of pumps suited to specific conditions are used for pumping. These fall into the following three broad categories, based on their source of power.

- Natural energy, e.g. solar pumps and wind pumps.
- Manual energy, e.g. hand pumps, playground roundabout.
- Mechanical energy, e.g. electrical submersible pumps and positive displacement and turbine pumps driven from surface by petrol or diesel engines or electric motors.

Table 9.3 lists some of the relevant information that should be captured regarding borehole equipment and monitoring facilities.

| Descriptor                                                                       |  |  |  |  |  |
|----------------------------------------------------------------------------------|--|--|--|--|--|
| Installation date (ccyy-mm-dd)                                                   |  |  |  |  |  |
| Installers contact details                                                       |  |  |  |  |  |
| Installation type                                                                |  |  |  |  |  |
| Depth to pump intake (m)                                                         |  |  |  |  |  |
| Riser main material (steel, uPVC or flexible hosing)                             |  |  |  |  |  |
| Riser main nominal diameter (mm ID)                                              |  |  |  |  |  |
| Type of power (see Table 9.4)                                                    |  |  |  |  |  |
| Pump motor power rating (kW)                                                     |  |  |  |  |  |
| Serial number of the pump                                                        |  |  |  |  |  |
| Suppliers contact details                                                        |  |  |  |  |  |
| Electrical meter number                                                          |  |  |  |  |  |
| Dipper tube present (Yes/No). If yes, then                                       |  |  |  |  |  |
| Dipper tube depth (m)                                                            |  |  |  |  |  |
| Dipper tube nominal diameter (mm ID)                                             |  |  |  |  |  |
| Equipped with water meter (Yes/No). If yes, then provide details regarding make, |  |  |  |  |  |
| type, number, etc.                                                               |  |  |  |  |  |

Table 9.3Borehole equipment and monitoring facilities

Table 9.4 provides a list of the most common pump types.

#### Table 9.4Pump types

| Descriptor                         |  |  |  |  |  |
|------------------------------------|--|--|--|--|--|
| Positive displacement              |  |  |  |  |  |
| Turbine                            |  |  |  |  |  |
| Submersible                        |  |  |  |  |  |
| Non-submersible (e.g. centrifugal) |  |  |  |  |  |

#### Table 9.5Energy source for borehole pumps

| Descriptor    |
|---------------|
| Electricity   |
| Petrol/diesel |
| Wind          |
| Sun           |
| Hand          |

#### The following recommendations must be supplied to the design engineer and/or pump supplier:

- Abstraction rate (m<sup>3</sup>/d)
- Abstraction duration (hours per day)
- Pump installation depth
- Maximum allowable water level drawdown (metres below surface)
- Target water quality range (EC mS/m)
- Extent of borehole protection zone
- Monitoring recommendations.

### 10 GROUNDWATER MONITORING

It is envisaged that groundwater monitoring networks in South Africa will be classified on three levels (*pers comm.*, E. van Wyk, 2002).

# 10.1 National Monitoring (Level 1)

This level addresses the collection and analysis of groundwater data on a national scale to provide a reference/background for other measurements. The monitoring stations will be selected to represent ambient groundwater conditions that are not impacted by short-term fluctuations caused by human activity. This level of monitoring will measure the natural response of aquifers to the natural conditions over the long term and will be used for resource planning and management purposes. It will include both groundwater quantity and quality monitoring.

# 10.2 Catchment Monitoring (Level 2)

This level drills down to the monitoring of water resources on a catchment scale aimed at collecting appropriate data for the effective management of all relevant groundwater management units and their related water bodies. Monitoring at this level should include both quantity and quality determinations. Each Catchment Management Agency (CMA) must develop and implement a regional monitoring system for the important aquifers in the catchment, and which should be integrated with other relevant types of water resource monitoring to rationalise monitoring activities.

# 10.3 Local Monitoring (Level 3)

Project- and site-specific monitoring of potential human impacts on water resources and the compliance monitoring are addressed at this level. Examples of local groundwater monitoring include water quantity monitoring at individual production boreholes and water quality monitoring at point sources of pollution (e.g. waste disposal sites). Monitoring of aquifer response to abstraction and potential pollution on a local scale may be driven through conditions linked to licenses and permits. DWAF, as the central regulatory authority, will provide guidance regarding monitoring protocols and requirements, as well as audit monitoring undertaken at a local scale.

When developing a monitoring strategy, it is important that the purpose of monitoring be well defined and is communicated to those who need to support the monitoring actions. No data should be collected simply for the sake of populating databases. Monitoring can be an expensive exercise and can only have value if the information generated is useful for purposes such as the following.

- The protection, maintenance or restoration of resources.
- The protection of public health.
- The protection of ecosystem functioning.
- Quantifying the effectiveness of pollution prevention measures.
- Quantifying the effectiveness of remediation measures.
- Acting as an early warning system to avoid unnecessary future remediation.

The types of data collected during groundwater monitoring can usually be distinguished as follows.

- Data related to quantity
- Water levels (static or dynamic), flow rates, pumping rates and duration, and abstraction (daily, monthly, annually etc).

- Data related to quality
- Physical measurements (e.g. temperature, electrical conductivity)
- Chemical measurements (e.g. pH, alkalinity, species concentrations)
- Specialised measurements (e.g. stable isotope ratios).

The choice of what data to collect, particularly in the case of chemical variables where hundreds of different species could be analysed, can be:

#### <u>Use-based</u>

Select determinants which affect the fitness of the water for a particular use

#### <u>Source-based</u>

Select determinants or indicators which reflect the impact of known point and non-point sources in the area Use risk based prioritisation to select determinants which have the greatest risk of damaging human or ecosystem health

#### <u>Resource-based</u>

Select determinants that help to quantify various aspects of the behaviour of the aquifer and the relationship between these aspects.

| 81                                   |                                            |
|--------------------------------------|--------------------------------------------|
| Descriptor                           | Unit of Measure                            |
| Piezometric head (groundwater level) | Metres below ground level (positive value) |
| Pumping rate / injection rate        | $m^3/day$ , $m^3/month$ , $m^3/annum$      |
| Pumping durations                    | Hours                                      |
| Precipitation over an area           | Millimetres per day                        |
| Temperature                          | Degree Celsius                             |
| Electrical conductivity              | milliSiemens/metre                         |
| PH                                   | Unitless                                   |
| Concentrations of chemical elements, | Typically mg/L or $\mu$ g/L                |
| ions and compounds (macro and trace  |                                            |
| elements)                            |                                            |
| Stable and radioactive isotope       | Variable, typically per mil (‰) and PMC,   |
| concentrations                       | depending on the isotope.                  |
| Microbiological (bacteriological)    | Variable, depending on the parameter, but  |
| variables                            | typically a count per volume.              |

Table 10.1Variable monitoring parameters

It is clear that there is a broad range of borehole monitoring data that can be collected, and it is important that the measurement units be kept consistent. Although it is not envisaged that all the data will be stored in the National Groundwater Archive (NGA), it is still important that the measurements include the date (ccyy-mm-dd) and time (hh:mm) that the different parameters were measured. In the case of laboratory-determined parameters, this will be the date and time that the water sample was collected, and not the date/time of its analysis.

# 11 CONCLUSION

With the many different groupings of people involved in groundwater development and utilisation, there is an associated diversity in the manner and means of recording borehole data and information.

This document provides a standardised basis for the reporting of the numerous activities, aspects and elements associated with a variety of geosites.

The advantages of using the "Standard Descriptors for Geosites" is that:

- Data acquisition strategy of DWAF will be enhanced.
- Data provided to DWAF will be standardised.
- Standardisation will facilitate the development of data capturing tools.
- Data will be more meaningful when down-loaded from the National Groundwater Archive (NGA) and thus enable improved data analysis.
- Standardisation will also facilitate the advancement of the National Groundwater Information System (NGIS) portfolio.

The challenge lies ahead for DWAF to encourage the adherence to these Standard Descriptors for Geosites and to improve the amount of data that is supplied to the National Groundwater Archive. This document provides the starting point for the meeting of the objectives of the DWAF data acquisition strategy.

### 12 ACKNOWLEDGEMENTS

The Steering Committee members are thanked for their significant inputs. This committee comprised:

| Manie Brynard     | Council for Geoscience |
|-------------------|------------------------|
| Ernst Bertram     | DWAF                   |
| Jan Girman        | DWAF                   |
| Helene Mullin     | DWAF                   |
| Dziem Dziembowski | (Consultant)           |
| Paul du Plessis   | (GPM Consultants)      |
| Phil Hobbs        | (Consultant)           |

The following external reviewers are also thanked for their contribution.

| Immo Blecher       | VSA                            |
|--------------------|--------------------------------|
| Ian Cameron-Clarke | SRK                            |
| Todd Halihan       | Oklahoma State University, USA |
| CarelHaupt         | WSM                            |
| GrahamHubert       | EMA                            |
| Andrew Johnston    | GCS                            |
| Manie Levin        | AfricCon                       |
| Gordon Maclear     | SRK                            |
| Reinie Meyer       | CSIR                           |
| Roger Parsons      | Parsons and Associates         |
| Karim Sami         | Council for Geoscience         |
| Theo Van Niekerk   | GeoMeasure                     |
| Gerrit Van Tonder  | IGS                            |
| Derek Whitfield    | BWA                            |
| Frans Wiegmans     | VSA                            |

#### **13 REFERENCES**

Bosch, J.H.A., Standard Boor Beschrijvingsmethode. Voorlopige versie 5. Nederlands Instituut voor Toegepaste Geowetenschappen TNO. TNO-rapport NITG 98-205-A

Bruin, R.M.H. and Brink, A.B.A., 1994. Geoterminology Workshop, 1990. Guidelines for soil and rock logging. Published and sponsored jointly by the: Association of Engineering Geologists South Africa Section, South African Institution of Civil Engineers, and South African Institute of Engineering Geologists.

Bryan, K., 1919. Classification of springs. Journal of Geology, Vol 27 p 522 - 561.

Buttrick D.B. and Van Schalkwyk A., 1995. The method scenario supposition for stability evaluation of sites on dolomitic land in South Africa. Journal of the South African Institution of Civil Engineering, 37(4).

Buttrick, D.B., Van Schalkwyk, A., Kleywegt, R.J. and Watermeyer, R.B., 2001. Proposed method for dolomite land hazard and risk assessment in South Africa. Journal of the South African Institution of Civil Engineering, 43(2).

Daniels, J. J., and Keys, W. S., 1991. Geophysical well logging for hazardous waste evaluations. In Ward, S. H., (editor) SEG Special Volume on Environmental Geophysics, 263 - 307.

Deverill, P., Nash, S. and Still, D., 1999. The development of hand augured tube wells in southern Maputaland. Partners in development on behalf of the Mvula Trust and the European Union.

Driscoll, F. G., 1989. Groundwater and Wells. 2<sup>nd</sup> Edition. Published by Johnson Filtration Systems Inc., St Paul, Minnesota 55112.

DWAF, 1998. Document 3: Minimum Requirements for Water Quality Monitoring at Waste Management Facilities. CTP Book Printers, Cape, ISBN 0621-16295-7.

Groundwater Consultants, Bee Pee (Pty) Ltd, 2000. Standards and guidelines for the groundwater development in the SADC region. Report No. 2 Southern Africa Development Community (SADC) Water Sector Coordinating Unit (WSCU).

Howard, K. W. F., 1990. Geophysical well logging methods for the characterization of fractures in hard rocks. In Ward, S. H., (editor) Geotechnical and Environmental Geophysics Volume 1, 295-315.

Jennings, G.D., 2003. Protection of water supply springs. Available on internet at: http://www.bae.ncsu.edu/programs/extension/publicat/wqwm/ag473-15.html.

Kent, L.E., 1949. The thermal waters of the Union of South Africa and South West Africa. Trans. Geol. Soc. Afric. Vol 52 p 231 – 264.

Kennedy, M. and Kopp, S., 2000. Understanding map projections. Environmental Systems Research Institute, USA.

Kruseman and de Ridder, 1991. Analysis and evaluation of pumping test data. ILRI publication 47 Netherlands.

Meinzer, O.E., 1923. Large springs in the United States. US Geological Survey Water-supply paper 557, Washington DC.

National Water Act, 1998. Government Gazette of the Republic of South Africa (Act 36 of 1998), Vol. 398 No. 19182, 26 August 1998, Cape Town.

Parker, H.W., 1996. Geotechnical Investigations, in Tunnel Engineering Handbook, Bickel, et al (eds).

Pearson, I., Weaver, J. and Ravenscroft, P., 2003. The realiability of small spring water supply systems for community water supply projects. Research report to the Water Research Commission. ISBN 1-77005-023-X.

Rudolph, D.C., Kirchner, J. and Botha, J.F., 1991. Investigation into variable head tests for the determination of aquifer constants. WRC publication 272/1/92.

SABS 241, 2001. South African Standard specification: drinking water. Edition 5. The South African Bureau of Standards, ISBN 0-626-12908-7.

Salmon, D., 2000. Management of coal mining impacts in water resources in South Africa. In proceedings: Groundwater past achievements and future challenges, XXX IAH Congress on Groundwater, Cape Town, South Africa.

SANS 10299-4, 2003. Development, maintenance and management of groundwater resources — Part 4: Test-pumping of water boreholes". Published by South African National Standards.

Slonecker, E.T. and Carter, J.A., 1990. GIS applications of global positioning system technology. GPS world May/June 1990.

Telford, W. M., Geldart, L. P. and Sheriff, R. E., 1990. Applied geophysics: second edition. Published by Cambridge University Press, Edinburgh Building, Cambridge CB2 2RU, United Kingdom.

Terzaghi, K., 1946. Rock defects and loads on tunnel supports, Rock tunneling with steel supports, Proctor, RV, White, TL, and Terzaghi, K, editors, Commercial Shearing and Stamping Co., Youngstown, Ohio.

The Chief Directorate: Surveys and Mapping, 1999. Hartebeeshoek94 – The new South African datum. Chief Directorate: Surveys and Mapping, Department of Land Affairs.Private Bag X10, Mowbray, 7705.

Thomson M., 1999. South African National Land-Cover Database Project. Report No. ENV/P/C 98136. CSIR, Pretoria

Todd, D.K., 1967. Groundwater Hydrology, John Wiley and Sons, Inc. New York.

Van Schalkwyk A. and Vermaak J.J.G, 2000. The relationship between the geotechnical properties of residual soils and rocks in the vadose zone. Water Research Commission, Pretoria, 701/1/00.

Standard Descriptors for Geosites

Van Tonder G. and Xu Y., 1999 The Flow Characteristic Method. Institute of Groundwater Studies, University of the Free State, Bloemfontein.

Van Tonder, G.J., 2001. Personal communication. Institute for Groundwater Studies, University of the Free State, Bloemfontein.

Van Tonder, G.J., 2003. Class notes. Institute for Groundwater Studies, University of the Free State, Bloemfontein.

Van Tonder, G.J., 2004. Personal communication. Institute for Groundwater Studies, University of the Free State, Bloemfontein.

Virginia State University, 1996. Fact sheet number 2, Well and Spring management, publication number 442-902.

Wagener, F., 1981. Engineering evaluation of dolomitic areas. Seminar on the engineering geology of dolomitic areas. Department of Geology, University of Pretoria.

Walhlstrom, E.E., 1973. Tunneling in Rock, Elsevier, 250 pages

Watermeyer, R.B. and Tromp, B., 1992. A systematic approach to the design and construction of single-storey residential structures on problem soils. The Civil Engineer in South Africa, March.

Weaver J.M.C., 1992. Groundwater Sampling. Water Research Commission, Pretoria, TT54/92.

Weaver J.M.C., 1995. Test pumping standards for South Africa. Discussion document – Groundwater '95 Conference, Midrand,

Xu, Y., Colvin, C., van Tonder, G.J., Hughes, S., Le Maitre, D., Zhang, J., Mafanya, T. and Braune, E., 2003. Towards the Resource Directed Measures: Groundwater component Water Research Commission, WRC Report No. 1090-2/1/03, Pretoria.





DATE: 2004-09-30

#### Appendix 2 – Stratigraphic Classification: Main Categories and Unit (Rank) Terms



Private Bag X 112, Pretoria 0001, South Africa Tel. (012) 841 1911 Fax. (012) 841 1221 http://www.geoscience.org.za

| STRATIGRAPHIC CLASSIFICATION:<br>MAIN CATEGORIES AND UNIT (RANK) TERMS |                                                                                                                                                             |                                                                                                                           |  |  |  |  |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Category                                                               | Unit (rank) term                                                                                                                                            | Example (S. Africa)                                                                                                       |  |  |  |  |  |
| Lithostratigraphic                                                     | Supergroup<br>Group<br>Subgroup<br>Formation<br>Member<br>Bed<br>Supersuite<br>Suite<br>Subsuite<br>Complex                                                 | Witwatersrand<br>West Rand<br>Hospital Hill<br>Parktown<br>Observatory<br>Contorted<br>Rustenburg<br>Zoetveld<br>Bushveld |  |  |  |  |  |
| Biostratigraphic                                                       | Biozone (general)<br>Range zones:<br>Taxon range zone<br>Concurrent range zone<br>Abundance (acme) zone<br>Assemblage zone<br>Lineage zone<br>Interval zone | Euskelosaurus<br>Cistecephalus<br>Lystrosaurus                                                                            |  |  |  |  |  |
| Chronostratigraphic<br>(+ Geochronologic)                              | Eonothem (Eon)<br>Erathem (Era)<br>System (Period)<br>Series (Epoch)<br>Stage (Age)<br>Chronozone (Chron)                                                   | Phanerozoic<br>Cenozoic<br>Tertiary<br>Eocene<br>Lutetian                                                                 |  |  |  |  |  |

#### Appendix 3 – Litho- and Chronostratigraphic units

**ST** = SACS approved status (AP = Approved by SACS; NY = Not yet approved; IF = Informal; NA = Not applicable - foreign country)

PUB = SACS publication status (LS = In Lithostratigraphic Series; Ca = In Catalogue; ID = Interim description (in Catalogue); IP = In press; MS = Manuscript received) TG = Task group

Lithostratigraphy nomenclature changes periodically. An updated version of this table can be obtained from the CGS website at: http://www.geoscience.org.za/sacs/newlith.htm

| CODE       | LITHO NAME                  | RANK      | LABEL       | ST          | PARENT NAME             | RANK       | CHRONO<br>NAME | RANK | PUB  |
|------------|-----------------------------|-----------|-------------|-------------|-------------------------|------------|----------------|------|------|
| 1448       | Aandenk                     | Member    | Raa         | NY          | Kimberley               | Formation  | Randian        | Era  | -    |
| 1009       | Aasvogelkop Gneiss          | None      | K*aa        | NY          | Vyfbeker<br>Metamorphic | Suite      | Kheisian       | Sys  |      |
| 413        | Aasvoëlkop                  | Formation | K*as        | AP          | Matlabas                | Subgroup   | Kheisian       | Sys  |      |
| 408        | Abbasas                     | Formation | K*ab        | NY          | Haib                    | Subgroup   | Kheisian       | Sys  |      |
| 262        | Abel Erasmus                | Formation | Rab         | AP          | Wolkberg                | Group      | Randian        | Era  | MS   |
| 399        | Abiekwa River               | Formation | K*ai        | AP          | De Hoop                 | Subgroup   | Kheisian       | Sys  |      |
| 1194       | Abrahamskraal               | Formation | Pab         | AP          | Adelaide                | Subgroup   | Permian        | Sys  | MS   |
| 870        | Achab                       | Suite     | N*ac        | NY          | *                       | *          | Namaquan       | Sys  |      |
| 784        | Addo                        | Member    | Ka          | AP          | Sundays River           | Formation  | Cretaceous     | Sys  |      |
| 473        | Adeisestad                  | Formation | N*ad        | AP          | Koras                   | Group      | Namaquan       | Sys  | Ca   |
| 126        | Adelaide                    | Subgroup  | Pa          | AP          | Beaufort                | Group      | Permian        | Svs  |      |
| 540        | Adolphspoort                | Formation | Da          | AP          | Traka                   | Subgroup   | Devonian       | Svs  |      |
| 1735       | Afrikander                  | Formation | Raf         | NY          | Government              | Subgroup   | Randian        | Ēra  |      |
| 1729       | Agatha                      | Formation | Rag         | NY          | Bivane                  | Subgroup   | Randian        | Era  |      |
| 96         | Aggenevs                    | Subgroup  | K*ag        | AP          | Bushmanland             | Group      | Kheisian       | Svs  |      |
| 236        | Alberton                    | Formation | Ral         | AP          | Klipriviersberg         | Group      | Randian        | Era  |      |
| 654        | Alexander Bay               | Formation | C^al        | AP          | *                       | *          | Cenozoic       | Era  |      |
| 636        | Alexandria                  | Formation | Та          | AP          | Algoa                   | Group      | Tertiary       | Svs  | LS   |
| 82         | Algoa                       | Group     | C^a         | AP          | *                       | *          | Cenozoic       | Era  | Ca   |
| 665        | Aliwal North                | Formation | 02          | AP          | *                       | *          | Quaternary     | Svs  | - Ca |
| 246        | Allanridge                  | Formation | Ra          | AP          | Ventersdorn             | Supergroup | Randian        | Era  |      |
| 1396       | Alldays Gneiss              | None      |             | NV          | Beit Bridge             | Complex    | Swazian        | Era  | MS   |
| 411        | Alma                        | Formation | K*al        | AP          | Nylstroom               | Subgroup   | Kheisian       | Sve  |      |
| 390        | Amam-Wes                    | Formation | K*am        | NV          | Khurishera              | Subgroup   | Kheisian       | Sve  |      |
| 666        | Amanzi                      | Formation | Oam         | AP          | *                       | *          | Quaternary     | Sve  |      |
| 102        | Ameterdam                   | Formation | Ram         | AP          | *                       | *          | Randian        | Era  |      |
| 782        | Amsterdamboek               | Member    | Kam         | AD          | Sundave River           | Formation  |                | Sve  |      |
| 767        | Andriesberg                 | Member    | C*a         | AP          | Vaartwell               | Formation  | Cambrian       | Sys  | Ca   |
| 1694       | Anhalt Granitoid            | Suite     | 72          | AP          | *                       | *          | Swazian        | Era  | Ca   |
| 8          | Areachan                    | Group     | N*a         | NV          | *                       | *          | Namaquan       | Sve  | Ca   |
| 1022       | Areh Gneiss                 | None      | N*ab        | AD          | *                       | *          | Namaquan       | Swe  |      |
| 1022       | Arooms Gneiss               | None      | N*ar        | AP          | Little Namaqualand      | Suite      | Namaquan       | Swe  |      |
| 2038       | Arondegas                   | Formation | Nar         | NV          | Knersvlakte             | Subgroup   | Namibian       | Era  |      |
| 2030<br>47 | Arribees                    | Group     | K*a         | NV          | *                       | *          | Kheisian       | Swe  |      |
| 453        | Arries Drift                | Eormation | Tar         | AD          | *                       | *          | Tertiary       | Sve  |      |
| 310        | Ashestos Hills              | Subgroup  | Vo          |             | Chaop                   | Group      | Vaclian        | Ero  |      |
| 2150       | Ashburton                   | Mombor    | Pac         | NV          | Floodevloi              | Formation  | Pormian        | Suc  |      |
| 1607       | Associati                   | Formation | 7 200       | AD          | *                       | *          | Swarian        | Ero  | Ca   |
| 2022       | Astrophicof                 | Formation | Las         | NV          | Vacantalita             | Suboroup   | Namihian       | Ena  | Ca   |
| 2033       | Astyliskiool                | Formation | INAS<br>Nat | IN I<br>NIV | Cifferen                | Subgroup   | Namibian       | Бла  |      |
| 2040       | Aues                        | Formation | INat        | INI         | Gilberg                 | Group      | INamibian      | Era  |      |
| 1087       | Augraphes<br>Granite/Gneiss | None      | N*au        | AP          | *                       | *          | Namaquan       | Sys  | Са   |
| 210        | Babrosco                    | Formation | Rba         | NY          | Jeppestown              | Subgroup   | Randian        | Era  |      |
| 989        | Baderoukwe Granite          | None      | Rbd         | AP          | Vorster                 | Suite      | Randian        | Era  |      |
| 1055       | Bak River Granite           | None      | N*bak       | NY          | Eendoorn                | Suite      | Namaquan       | Sys  |      |
| 2207       | Bakenskop Gneiss            | None      | N*bkk       | NY          | *                       | *          | Namaquan       | Sys  |      |

| CODE | LITHO NAME                               | RANK       | LABEL            | ST  | PARENT NAME        | RANK           | CHRONO<br>NAME | RANK         | PUB  |
|------|------------------------------------------|------------|------------------|-----|--------------------|----------------|----------------|--------------|------|
| 1109 | Bakoondsvlei Granite                     | None       | N*bv             | NY  | *                  | *              | Namaquan       | Sys          |      |
| 575  | Balfour                                  | Formation  | Pba              | AP  | Adelaide           | Subgroup       | Permian        | Sys          |      |
| 981  | Balmoral Granite                         | None       | Vba              | AP  | Lebowa Granite     | Suite          | Vaalian        | Ēra          |      |
| 1758 | Banana Beach Gneiss                      | None       | N*ba             | AP  | *                  | *              | Namaquan       | Sys          | Ca   |
| 798  | Bandelierkop                             | Complex    | Zba              | AP  | *                  | *              | Swazian        | Ēra          |      |
| 1757 | Banke Granodiorite                       | None       | N*ban            | NY  | Spektakel          | Suite          | Namaquan       | Svs          |      |
| 1051 | Banks Vlei Gneiss                        | None       | N*bay            | NY  | *                  | *              | Namaguan       | Svs          |      |
| 1091 | Bantamberg Granite                       | None       | N*bat            | NY  | *                  | *              | Namaguan       | Svs          |      |
| 1201 | Barberskrans                             | Member     | Pbb              | AP  | Balfour            | Formation      | Permian        | Svs          |      |
| 1    | Barberton                                | Supergroup | Zb               | AP  | *                  | *              | Swazian        | Era          |      |
| 740  | Basehla                                  | Member     | K*ba             | AP  | Blouberg           | Formation      | Kheisian       | Svs          |      |
| 1106 | Basian Granite                           | None       | N*bi             | NV  | *                  | *              | Namaquan       | Sve          |      |
| 635  | Bathurst                                 | Formation  | Th               | AD  | Algoa              | Group          | Palaeogene     | Sheve        | Ca   |
| 526  | Baviaanskloof                            | Formation  | Dba              | AD  | Nardouw            | Subgroup       | Devonian       | Sue          | IS   |
| 120  | Baviaanskioon                            | Formation  | 7bu              |     | Moodies            | Subgroup       | Swarian        | Gys<br>Erro  | 1.5  |
| 139  | Baviaanskop<br>Bassiaa aslama an Canaita | Nega       | ZDV<br>V/har     |     | *                  | *              | Washing        | Бла          | MC   |
| 1151 | Baviaanskranz Granite                    | None       | V DV             | AP  | Ť                  | Τ.             | Vaalian        | Era          | MS   |
| 1163 | Tinguaite                                | None       | N*bc             | AP  | Pilanesberg        | Complex        | Namaquan       | Sys          |      |
| 1756 | Beatrix                                  | Member     | Rbe              | NY  | Kimberley          | Formation      | Randian        | Era          |      |
| 77   | Beaufort                                 | Group      | P-TRb            | AP  | Karoo              | Supergroup     | Permian        | Sys          |      |
| 77   | Beaufort                                 | Group      | P-TRb            | AP  | Karoo              | Supergroup     | Triassic       | Sys          |      |
| 2119 | Beenbreek Gneiss                         | None       | N*bn             | NY  | *                  | *              | Namaquan       | Sys          |      |
| 797  | Beit Bridge                              | Complex    | Zbb              | AP  | *                  | *              | Swazian        | Era          |      |
| 2172 | Bellville                                | Formation  | Tbe              | NY  | *                  | *              | Cenozoic       | Era          |      |
| 135  | Belvue Road                              | Formation  | Zbe              | AP  | Fig Tree           | Group          | Swazian        | Era          |      |
| 629  | Berea                                    | Formation  | Obe              | AP  | *                  | *              | Ouaternary     | Svs          |      |
| 485  | Berg River                               | Formation  | Nbe              | AP  | Swartland          | Subgroup       | Namibian       | Ēra          |      |
| 2036 | Besonderheid                             | Formation  | Nbs              | NY  | Knersvlakte        | Subgroup       | Namibian       | Era          |      |
| 1047 | Betadam Gabbronorite                     | None       | N*bd             | AP  | *                  | *              | Namaquan       | Svs          | Са   |
| 1983 | Bethel Dam Granite                       | None       | N-C*b            | AP  | Cape Granite       | Suite          | Cambrian       | Sys          | Ca   |
| 1983 | Bethel Dam Granite                       | None       | N-C*b            | AP  | Cape Granite       | Suite          | Namihian       | Era          | Ca   |
| 368  | Bethesda                                 | Formation  | N*be             | AP  | Areachan           | Group          | Namaquan       | Sve          | Ca   |
| 603  | Boyota Conglomorato                      | Mombor     | Vbo              |     | Rooihoogto         | Eormation      | Vaalian        | Ero          |      |
| 1730 | Beverscongiomerate                       | Mombor     | Vby              |     | Roomoogie          | Formation      | Vaalian        | Ero          |      |
| 1737 | Bidowy                                   | Suboroup   | Dbi              |     | Rayton             | Crown          | Devenien       | Sm           | Ca   |
| 973  | Bierkraal Magnetite                      | None       | Vbi              | АР  | Bustenburg Lavered | Suite          | Vaalian        | - Sys<br>Era | Ca   |
| ,,,, | Gabbro                                   | None       | V DI             | 111 | Rustenburg Layered | Suite          | v aanan        | 1.114        |      |
| 1400 | Biesiesfontein Granite                   | None       | N*bi             | NY  | *                  | *              | Namaquan       | Sys          |      |
| 1075 | Biesiespoort Metagabbro                  | None       | N*bs             | NY  | *                  | *              | Namaquan       | Sys          |      |
| 50   | Biesje Poort                             | Group      | K*bi             | NY  | Korannaland        | Supergroup     | Kheisian       | Sys          |      |
| 2028 | Biesjes Fontein                          | Suite      | Tbf              | NY  | *                  | *              | Cretaceous     | Sys          |      |
| 218  | Bird                                     | Member     | Rbi              | AP  | Krugersdorp        | Formation      | Randian        | Era          |      |
| 102  | Bitterfontein                            | Formation  | Mbt              | NY  | Kamiesberg         | Subgroup       | Mokolian       | Era          |      |
| 164  | Bivane                                   | Subgroup   | Rbv              | AP  | Nsuze              | Group          | Randian        | Era          |      |
| 700  | Blaauwbank Shale                         | Member     | Vbw              | AP  | Leeuwpoort         | Formation      | Vaalian        | Era          |      |
| 273  | Black Reef                               | Formation  | Vbr              | AP  | Transvaal          | Supergroup     | Vaalian        | Era          |      |
| 2117 | Bladgrond South Gneiss                   | None       | N*bls            | NY  | *                  | *              | Namaguan       | Svs          |      |
| 2222 | Blanco                                   | None       | C*bl             | NY  | Cape Granite       | Suite          | Cambrian       | Svs          |      |
| 1049 | Blauwbosch Granite                       | None       | N*hw             | AP  | *                  | *              | Namaquan       | Sys          | Ca   |
| 866  | Bleskon                                  | Suite      | N*bl             | NY  | *                  | *              | Namaquan       | Sys          | - Cu |
| 1225 | Blinkberg                                | Member     | Dbb              | AD  | Weltevrede         | Formation      | Devonian       | Sve          |      |
| 5/3  | Blinkborg                                | Formation  | Dbl              |     | Woltowrodo         | Subgroup       | Devonian       | Sys          |      |
| 272  | Bloompoort                               | Formation  | Dbi              |     | Transmal           | Subgroup       | Pandian        | Gys<br>Erro  | MC   |
| 2046 | Blompoort Crepito                        | Nono       | N#b+             | NV  | Spolstolsol        | Supergroup     | Namaguan       | Suc          | 1415 |
| 2040 | Diompoort Granite                        | None       | IN**DL<br>17+1.1 |     | spektakei          | suite          | Namaquan       | Sys          |      |
| 424  | Diouberg                                 | Nom        | NTL1             | AP  | Taasahaan          | En mer chi cui | Nemihi         | Sys<br>Em    |      |
| /01  | Dioubergstrand                           | Member     | INDI<br>NTV1.1   | AP  | 1 ygerberg         | Formation      | INAMIDIAN      | Era          |      |
| 2045 | BIOUKOP Granite                          | INOne      | IN*DK            | INY | Spektakel          | Suite          | Namaquan       | Sys          |      |
| 2039 | Bloupoort                                | Formation  | Nbp              | NY  | Gitberg            | Group          | Namibian       | Era          | T.O. |
| 649  | Bluewater Bay                            | Formation  | C^bl             | AP  | <u>↑</u>           | *              | Cenozoic       | Era          | LS   |
| 626  | Blutt                                    | Formation  | Qb               | AP  | *                  | *              | Quaternary     | Sys          |      |
| 1401 | Blyvooruitzicht                          | Formation  | Rbl              | NY  | Johannesburg       | Subgroup       | Randian        | Era          |      |
| 983  | Bobbejaankop Granite                     | None       | Vbb              | AP  | Lebowa Granite     | Suite          | Vaalian        | Era          |      |
| 731  | Boegoeberg                               | Member     | K*bg             | AP  | Groblershoop       | Formation      | Kheisian       | Sys          |      |
| 475  | Boegoeberg Dam                           | Formation  | K*bb             | NY  | Olifantshoek       | Supergroup     | Kheisian       | Sys          |      |

| CODE | LITHO NAME                       | RANK      | LABEL             | ST          | PARENT NAME        | RANK       | CHRONO<br>NAME | RANK          | PUB        |
|------|----------------------------------|-----------|-------------------|-------------|--------------------|------------|----------------|---------------|------------|
| 2054 | Boegoekom                        | Formation | Mbm               | NY          | Kamiesberg         | Subgroup   | Mokolian       | Era           |            |
| 406  | Boerputs                         | Formation | K*be              | NY          | Haib               | Subgroup   | Kheisian       | Svs           |            |
| 912  | Boesmanskop Svenite              | None      | Zbo               | AP          | *                  | *          | Swazian        | Era           |            |
|      |                                  |           |                   |             | Koelmanskop        |            |                |               |            |
| 345  | Bok-Se-Puts                      | Formation | K*bp              | NY          | Metamorphic        | Suite      | Kheisian       | Sys           |            |
| 72   | Bokkeveld                        | Group     | Db                | AP          | Cape               | Supergroup | Devonian       | Svs           | Са         |
| 112  | Boland                           | Suberoup  | Nb                | AP          | Malmesbury         | Group      | Namibian       | Era           | <u>o</u> u |
| 160  | Bomvu                            | Formation | Rbm               | AP          | Nsuze              | Group      | Randian        | Era           |            |
| 204  | Bonanza                          | Formation | Rbn               | NY          | Government         | Suberoup   | Randian        | Era           |            |
| 1781 | Bongaspoort                      | Formation | Rho               | NY          | Nkoneni            | Subgroup   | Randian        | Era           |            |
| 464  | Boom River                       | Formation | N*hm              | AP          | Koras              | Group      | Namaquan       | Svs           | Ca         |
| 704  | Boomplaas                        | Formation | Vbp               | AP          | Schmidtsdrif       | Subgroup   | Vaalian        | Era           | Ga         |
| 226  | Boovsens                         | Formation | Rbo               | AP          | Iohanneshurg       | Subgroup   | Randian        | Era           |            |
| 111  | Bope                             | Formation | N*bo              | AD          | Mfongosi           | Group      | Namaquan       | Sve           |            |
| 533  | Boplase                          | Formation | Dbo               | AD          | Cerec              | Subgroup   | Devonian       | Sys           | IS         |
| 601  | Boshelzpoort                     | Formation | TRbo              |             | Karoo              | Subgroup   | Triassic       | Suc           | 1.5        |
| 600  | Boseboffebore Quartrite          | Mombor    | Who               | AD          | Lagure a art       | Earmation  | Valian         | - Sys<br>Erec |            |
| 2022 | Boshook                          | Formation | VDS               |             | Drotorio           | Croup      | Vaalian        | Era           |            |
| 203  | Bossieleem                       | Formation | V DO              | NIV         | Variahan           | Stoup      | Vaanan         | E1a<br>S-m    |            |
| 338  | Dossiekom                        | Formation | N <sup>+</sup> DO | IN I        | Kannesberg         | Subgroup   | Kneisian       | Sys           | C          |
| 465  | Bossienek                        | Formation | N^bo<br>N↓(C*1    | AP          | Koras              | Group      | Namaquan       | Sys           | Ca         |
| 2168 | Botterberg Granodiorite          | None      | N/C*bo            | NY          | Cape Granite       | Suite      | Cambrian       | Sys           |            |
| 2168 | Botterberg Granodiorite          | None      | N/C*bo            | NY          | Cape Granite       | Suite      | Namibian       | Era           |            |
| 245  | Bothaville                       | Formation | Rbt               | AP          | Ventersdorp        | Supergroup | Randian        | Era           |            |
| 1036 | Boudbytkop Syenite               | None      | N*by              | NY          | *                  | *          | Namaquan       | Sys           |            |
| 1058 | Boven Rugzeer Granite            | None      | N*bg              | NY          | Keimoes            | Suite      | Namaquan       | Sys           |            |
| 696  | Boven Shale                      | Member    | Vbn               | AP          | Silverton          | Formation  | Vaalian        | Era           |            |
| 1038 | Brakbos Biotite Granite          | None      | N*bb              | AP          | Keimoes            | Suite      | Namaquan       | Sys           |            |
| 765  | Brakkerivier                     | Member    | Nbk               | AP          | Groenefontein      | Formation  | Namibian       | Era           | Ca         |
| 854  | Brakwater Metamorphic            | Suite     | K*br              | NY          | *                  | *          | Kheisian       | Sys           |            |
| 1018 | Brandewynsbank Gneiss            | None      | K*bw              | AP          | Gladkop            | Suite      | Kheisian       | Sys           |            |
| 1680 | Brandkop                         | Subgroup  | C*b               | NY          | Vanrhynsdorp       | Group      | Cambrian       | Sys           |            |
| 1353 | Brandwacht                       | Formation | Nbr               | AP          | Boland             | Subgroup   | Namibian       | Era           |            |
| 2019 | Brazil Granite                   | None      | N*bz              | NY          | Goraap             | Suite      | Namaquan       | Sys           |            |
| 509  | Breckhorn                        | Formation | Nbh               | AP          | Fish River         | Subgroup   | Namibian       | Era           |            |
| 83   | Bredasdorp                       | Group     | C^b               | AP          | *                  | *          | Cenozoic       | Era           | Ca         |
| 616  | Brenton                          | Formation | J-Kbr             | AP          | *                  | *          | Cretaceous     | Sys           |            |
| 616  | Brenton                          | Formation | J-Kbr             | AP          | *                  | *          | Jurassic       | Sys           |            |
| 1984 | Bretagne Granite                 | None      | C*br              | AP          | Cape Granite       | Suite      | Cambrian       | Svs           | Ca         |
| 482  | Bridgetown                       | Formation | Nbi               | AP          | Malmesbury         | Group      | Namibian       | Era           |            |
| 774  | Britskraal                       | Member    | Pbr               | AP          | Waterford          | Formation  | Permian        | Svs           | Са         |
| 198  | Brixton                          | Formation | Rbr               | AP          | Hospital Hill      | Suberoup   | Randian        | Era           |            |
| 324  | Brulkolk                         | Formation | K*bk              | NY          | *                  | *          | Kheisian       | Svs           |            |
| 52   | Brulpan                          | Group     | K*bu              | NY          | *                  | *          | Kheisian       | Sve           |            |
| 320  | Brulsand                         | Subgroup  | K*be              | AD          | Volon              | Group      | Kheisian       | Sve           |            |
| 1059 | Brussel Granite                  | None      | N*br              | NV          | Keimoes            | Suite      | Namaquan       | Sys           |            |
| 658  | Budio                            | Formation | Thu               | ΔD          | Kalahari           | Group      | Tortiory       | Sys           |            |
| 1740 | Dudili<br>Buffele Divor          | Mombor    | Dhu               |             | Collingham         | Earmation  | Dormion        | Sys           | τς         |
| 1740 | Buffele River Creatite           | Nono      | rbu<br>Ni*bf      | NV          | Little Nemagualand | Suite      | Namaguan       | Sys           | Lo         |
| 27   | Buffelefentein                   | Crear     | DL                | AD          | The research       | Suite      | Dandian        | - Sys         |            |
| 57   | Duffelstontein<br>D. (Calablasic | Group     | KD<br>1/1         | AP          | I ransvaai         | Supergroup | Kandian        | Era           |            |
| 1(72 | Duffelskioof                     | Commation | ND<br>NV1         | IN I<br>NIV | Unterinage         | Group      | Cretaceous     | Sys           |            |
| 16/2 | Buffelskraal                     | Complex   | IN*DU<br>N™L I    | IN Y        | т<br>              | *          | Namaquan       | Sys           |            |
| 1123 | Buhleni Gneiss                   | None      | N*bh<br>D1        | AP          | *<br>D : D : 1     | *          | Namaquan       | Sys           |            |
| 924  | Bulai Gneiss                     | None      | Rbu               | AP          | Beit Bridge        | Complex    | Randian        | Era           |            |
| 811  | Bulls Run                        | Complex   | N*b               | AP          | *                  | *          | Namaquan       | Sys           | Ca         |
| 833  | Bumbeni                          | Complex   | Jb                | AP          | *                  | *          | Jurassic       | Sys           | -          |
| 577  | Burgersdorp                      | Formation | TRb               | AP          | Tarkastad          | Subgroup   | Triassic       | Sys           | Ca         |
| 2220 | Burtons Puts Granite             | None      | N*bur             | NY          | *                  | *          | Namaquan       | Sys           |            |
| 54   | Bushmanland                      | Group     | K*b               | AP          | *                  | *          | Kheisian       | Sys           |            |
| 806  | Bushveld                         | Complex   | Vb                | AP          | *                  | *          | Vaalian        | Era           |            |
| 2200 | Button's Kop                     | Member    | Rbk               | NY          | Selati             | Formation  | Randian        | Era           |            |
| 2123 | Bysteek                          | Formation | K*by              | NY          | Arribees           | Group      | Kheisian       | Sys           |            |
| 380  | Cammas                           | Formation | K*ca              | NY          | Pella              | Subgroup   | Kheisian       | Sys           |            |
| 1685 | Campbell Rand                    | Subgroup  | Vca               | NY          | Ghaap              | Group      | Vaalian        | Era           |            |
| 1985 | Cango Caves                      | Group     | Nc                | AP          | *                  | *          | Namibian       | Era           | Ca         |

| CODE | LITHO NAME                   | RANK       | LABEL  | ST | PARENT NAME                | RANK       | CHRONO<br>NAME | RANK | PUB |
|------|------------------------------|------------|--------|----|----------------------------|------------|----------------|------|-----|
| 12   | Cape                         | Supergroup | O-Cc   | AP | *                          | *          | Carboniferous  | Sys  |     |
| 12   | Cape                         | Supergroup | O-Cc   | AP | *                          | *          | Devonian       | Sys  |     |
| 12   | Cape                         | Supergroup | O-Cc   | AP | *                          | *          | Ordovician     | Sys  |     |
| 12   | Cape                         | Supergroup | O-Cc   | AP | *                          | *          | Silurian       | Sys  |     |
| 2174 | Cape Columbine Granite       | None       | C*cc   | AP | Cape Granite               | Suite      | Cambrian       | Sys  |     |
| 652  | Cape Flats                   | Formation  | Qc     | AP | *                          | *          | Quaternary     | Sys  |     |
| 887  | Cape Granite                 | Suite      | N-C*c  | AP | *                          | *          | Cambrian       | Sys  |     |
| 887  | Cape Granite                 | Suite      | N-C*c  | AP | *                          | *          | Namibian       | Era  |     |
| 2084 | Cape Peninsula Pluton        | Pluton     | N-C*cp | IF | Cape Granite               | Suite      | Cambrian       | Sys  |     |
| 2084 | Cape Peninsula Pluton        | Pluton     | N-C*cp | IF | Cape Granite               | Suite      | Namibian       | Era  |     |
| 677  | Cascade                      | Member     | Rca    | AP | Ntombe                     | Formation  | Randian        | Era  |     |
| 786  | Cave Rock Calcarenite        | Member     | Qca    | AP | Bluff                      | Formation  | Pleistocene    | Ser  |     |
| 522  | Cedarberg                    | Formation  | Oc     | AP | Table Mountain             | Group      | Ordovician     | Sys  |     |
| 29   | Central Rand                 | Group      | Rc     | AP | Witwatersrand              | Supergroup | Randian        | Era  |     |
| 120  | Ceres                        | Subgroup   | Dc     | AP | Bokkeveld                  | Group      | Devonian       | Sys  | Ca  |
| 1170 | Chakise Foyaiite             | None       | N*ch   | NY | Pilanesberg                | Complex    | Namaquan       | Sys  |     |
| 163  | Chobeni                      | Formation  | Rch    | AP | Nsuze                      | Group      | Randian        | Era  |     |
| 463  | Christiana                   | Formation  | N*c    | AP | Koras                      | Group      | Namaquan       | Sys  | Ca  |
| 39   | Chuniespoort                 | Group      | Vch    | AP | Transvaal                  | Supergroup | Vaalian        | Era  |     |
| 1184 | Citruspoort Granite          | None       | N/C*c  | NY | Cape Granite               | Suite      | Cambrian       | Sys  | MS  |
| 1184 | Citruspoort Granite          | None       | N/C*c  | NY | Cape Granite               | Suite      | Namibian       | Era  | MS  |
| 952  | Clapham Bronzitite           | None       | Vcp    | AP | Croydon                    | Subsuite   | Vaalian        | Era  |     |
| 586  | Clarens                      | Formation  | Jc     | AP | Karoo                      | Supergroup | Jurassic       | Sys  | MS  |
| 705  | Clearwater                   | Formation  | Vcl    | NY | Schmidtsdrif               | Subgroup   | Vaalian        | Era  |     |
| 415  | Cleremont                    | Formation  | K*c    | AP | Kransberg                  | Subgroup   | Kheisian       | Sys  |     |
| 137  | Clutha                       | Formation  | Zc     | AP | Moodies                    | Group      | Swazian        | Era  |     |
| 904  | Cnydas                       | Subsuite   | N*cn   | NY | Keimoes                    | Suite      | Namaquan       | Sys  |     |
| 1093 | Coboop Granite/Gneiss        | None       | K*cb   | NY | *                          | *          | Kheisian       | Sys  |     |
| 608  | Coerney                      | Formation  | Jco    | AP | Suurberg                   | Group      | Jurassic       | Sys  | Ca  |
| 781  | Colchester Shale             | Member     | Jcl    | AP | Kirkwood                   | Formation  | Jurassic       | Sys  |     |
| 560  | Collingham                   | Formation  | Pc     | AP | Ecca                       | Group      | Permian        | Sys  | LS  |
| 346  | Collinskop                   | Formation  | K*co   | NY | Koelmanskop<br>Metamorphic | Suite      | Kheisian       | Sys  |     |
| 1027 | Colston Granite              | None       | N*co   | AP | Keimoes                    | Suite      | Namaquan       | Sys  | Ca  |
| 1695 | Commondale                   | Formation  | Zco    | AP | *                          | *          | Swazian        | Era  | Ca  |
| 1042 | Concordia Granite            | None       | N*cc   | AP | Spektakel                  | Suite      | Namaquan       | Sys  |     |
| 1686 | Constantia                   | Suite      | Rcn    | NY | *                          | *          | Randian        | Era  |     |
| 790  | Contorted                    | Bed        | Rct    | AP | Parktown                   | Formation  | Randian        | Era  |     |
| 606  | Cooeyana                     | Formation  | Jcy    | AP | *                          | *          | Jurassic       | Sys  |     |
| 668  | Cornelia                     | Formation  | Qco    | AP | *                          | *          | Quaternary     | Sys  |     |
| 202  | Coronation                   | Formation  | Rco    | AP | Government                 | Subgroup   | Randian        | Era  |     |
| 1290 | Critical                     | Zone       | Vc     | IF | Rustenburg Layered         | Suite      | Vaalian        | Era  |     |
| 207  | Crown                        | Formation  | Rcr    | AP | Jeppestown                 | Subgroup   | Randian        | Era  |     |
| 896  | Croydon                      | Subsuite   | Vcr    | NY | Rustenburg Layered         | Suite      | Vaalian        | Era  |     |
| 926  | Cunning Moor Tonalite        | None       | Rcu    | AP | *                          | *          | Randian        | Era  | Ca  |
| 1052 | Curries Camp Gneiss          | None       | N*cu   | NY | *                          | *          | Namaquan       | Sys  |     |
| 1317 | Cyferfontein                 | Formation  | Vcy    | AP | Makeckaan                  | Subgroup   | Vaalian        | Era  | Ca  |
| 378  | Dabenoris                    | Formation  | K*db   | NY | Pella                      | Subgroup   | Kheisian       | Sys  |     |
| 1056 | Daberas Granodiorite         | None       | N*da   | NY | Eendoorn                   | Suite      | Namaquan       | Sys  |     |
| 1726 | Dabie River                  | Formation  | Ndr    | NY | Hilda                      | Subgroup   | Namibian       | Era  | IP  |
| 2007 | Dabis                        | Formation  | Nd     | AP | Kuibis                     | Subgroup   | Namibian       | Era  |     |
| 361  | Dagbreek                     | Formation  | K*da   | AP | Vaalkoppies                | Group      | Kheisian       | Sys  |     |
| 1200 | Daggaboersnek                | Member     | Pd     | AP | Balfour                    | Formation  | Permian        | Sys  |     |
| 911  | Dalmein Granodiorite         | None       | Zda    | AP | *                          | *          | Swazian        | Ēra  |     |
| 300  | Damwal                       | Formation  | Vdm    | AP | Rooiberg                   | Group      | Vaalian        | Era  |     |
| 711  | Daniëlskuil                  | Formation  | Vd     | AP | Asbestos Hills             | Subgroup   | Vaalian        | Era  |     |
| 2089 | Darling Batholith            | Batholith  | N-C*d  | IF | Cape Granite               | Suite      | Cambrian       | Svs  |     |
| 2089 | Darling Batholith            | Batholith  | N-C*d  | IF | Cape Granite               | Suite      | Namibian       | Era  |     |
| 287  | Daspoort                     | Formation  | Vdp    | AP | Pretoria                   | Group      | Vaalian        | Era  |     |
| 1183 | Dassen Heuwel<br>Aplogranite | None       | N/C*d  | NY | Cape Granite               | Suite      | Cambrian       | Sys  | MS  |
| 1183 | Dassen Heuwel                | None       | N/C*d  | NY | Cape Granite               | Suite      | Namibian       | Era  | MS  |
| 1751 | Dassenhoek                   | Member     | Oda    | AP | Durban                     | Formation  | Ordovician     | Svs  | LS  |

| CODE | LITHO NAME                            | RANK      | LABEL  | ST | PARENT NAME                | RANK       | CHRONO<br>NAME | RANK | PUB |
|------|---------------------------------------|-----------|--------|----|----------------------------|------------|----------------|------|-----|
| 2171 | Dassen Island Granite                 | None      | N/C*di | NY | Cape Granite               | Suite      | Cambrian       | Sys  |     |
| 2171 | Dassen Island Granite                 | None      | N/C*di | NY | Cape Granite               | Suite      | Namibian       | Era  |     |
| 1105 | De Bakken Granite                     | None      | N*db   | NY | *                          | *          | Namaquan       | Sys  |     |
| 1006 | De Banken Gneiss                      | None      | K*de   | NY | Brakwater<br>Metamorphic   | Suite      | Kheisian       | Sys  |     |
| 2120 | De Bome Gneiss                        | None      | K*do   | NY | Koelmanskop<br>Metamorphic | Suite      | Kheisian       | Sys  |     |
| 107  | De Hoop                               | Subgroup  | K*dh   | AP | Orange River               | Group      | Kheisian       | Svs  |     |
| 641  | De Hoopvlei                           | Formation | Td     | AP | Bredasdorp                 | Group      | Pliocene       | Ser  | LS  |
| 1696 | De Kraalen                            | Formation | Zd     | AP | *                          | *          | Swazian        | Era  | Ca  |
| 48   | De Kruis                              | Group     | K*dk   | NY | *                          | *          | Kheisian       | Sys  |     |
| 1784 | Delfkom                               | Formation | Rdf    | NY | Odwaleni                   | Subgroup   | Randian        | Era  |     |
| 271  | Dennilton                             | Formation | Rde    | AP | *                          | *          | Randian        | Era  | MS  |
| 679  | Denny Dalton<br>Conglomerate          | Member    | Rdd    | AP | Sinqeni                    | Formation  | Randian        | Era  |     |
| 1154 | Derdepoort Carbonatite                | None      | N*de   | AP | Pienaars River             | Complex    | Namaquan       | Svs  |     |
| 2196 | Diazville                             | Member    | Tdi    | NY | Langebaan                  | Formation  | Pliocene       | Ser  |     |
| 2018 | Dikgat Granite                        | None      | N*dk   | NY | Goraap                     | Suite      | Namaquan       | Sys  |     |
| 1121 | Dimane Granite                        | None      | N*dm   | AP | *                          | *          | Namaquan       | Sys  |     |
| 436  | Dinuntuli                             | Formation | N*di   | AP | Mfongosi                   | Group      | Namaquan       | Sys  |     |
| 552  | Dirkskraal                            | Formation | Cd     | AP | Kommadagga                 | Subgroup   | Carboniferous  | Sys  |     |
| 169  | Dlabe                                 | Formation | Rdl    | AP | Nsuze                      | Group      | Randian        | Era  |     |
| 432  | Dlolwana                              | Formation | N*dl   | AP | Ntingwe                    | Group      | Namaquan       | Sys  |     |
| 2034 | Dolkraals                             | Formation | Ndo    | NY | Knersvlakte                | Subgroup   | Namibian       | Era  |     |
| 27   | Dominion                              | Group     | Rd     | AP | *                          | *          | Randian        | Era  |     |
| 445  | Dondwana                              | Formation | N*d    | AP | Tugela                     | Group      | Namaquan       | Sys  |     |
| 1054 | Donkieboud Granite                    | None      | N*do   | NY | Eendoorn                   | Suite      | Namaquan       | Sys  |     |
| 89   | Doornfontein                          | Subgroup  | Rdo    | AP | Marydale                   | Group      | Randian        | Era  |     |
| 918  | Doornhoek<br>Trondhjemite             | None      | Zdo    | AP | *                          | *          | Swazian        | Era  | Ca  |
| 227  | Doornkop Quartzite                    | Member    | Rdk    | AP | Booysens                   | Formation  | Randian        | Era  |     |
| 796  | Doradale                              | Formation | Vdo    | AP | Koegas                     | Subgroup   | Vaalian        | Era  |     |
| 925  | Draghoender<br>Granite/Gneiss         | None      | Rdr    | NY | *                          | *          | Randian        | Era  |     |
| 587  | Drakensberg                           | Group     | Jdr    | AP | Karoo                      | Supergroup | Jurassic       | Sys  |     |
| 341  | Dreyer's Put                          | Formation | K*dy   | NY | Vyfbeker<br>Metamorphic    | Suite      | Kheisian       | Sys  |     |
| 339  | Driehoek                              | Formation | K*di   | NY | Vyfbeker<br>Metamorphic    | Suite      | Kheisian       | Sys  |     |
| 583  | Driekoppen                            | Formation | TRd    | NY | Tarkastad                  | Subgroup   | Triassic       | Svs  |     |
| 46   | Droëboom                              | Group     | K*d    | NY | *                          | *          | Kheisian       | Svs  |     |
| 327  | Droëgrond                             | Formation | K*dr   | NY | Droëboom                   | Group      | Kheisian       | Svs  |     |
| 2043 | Droëkraal Amphibolite                 | None      | N*dr   | NY | *                          | *          | Namaquan       | Sys  |     |
| 975  | Drummondlea<br>Harzburgite-Chromitite | None      | Vdr    | NY | Zoetveld                   | Subsuite   | Vaalian        | Era  | MS  |
| 898  | Dsjate                                | Subsuite  | Vdj    | NY | Rustenburg Lavered         | Suite      | Vaalian        | Era  |     |
| 280  | Duitschland                           | Formation | Vdu    | AP | Chuniespoort               | Group      | Vaalian        | Era  |     |
| 296  | Dullstroom                            | Formation | Vdl    | AP | Pretoria                   | Group      | Vaalian        | Era  |     |
| 446  | Dulumbe                               | Formation | N*du   | AP | Tugela                     | Group      | Namaquan       | Sys  |     |
| 1723 | Durban                                | Formation | Od     | AP | Natal                      | Group      | Ordovician     | Sys  | LS  |
| 1062 | Dwaalgees Granite                     | None      | N*dw   | NY | Keimoes                    | Suite      | Namaquan       | Sys  |     |
| 285  | Dwaalheuwel                           | Formation | Vdw    | AP | Pretoria                   | Group      | Vaalian        | Era  | LS  |
| 1683 | Dwaalhoek                             | Subgroup  | Rdw    | NY | Mozaan                     | Group      | Randian        | Era  |     |
| 2143 | Dwalile                               | Formation | Zdw    | NA | *                          | *          | Swazian        | Era  |     |
| 897  | Dwars River                           | Subsuite  | Vds    | NY | Rustenburg Layered         | Suite      | Vaalian        | Era  |     |
| 1673 | Dwarsfontein                          | Complex   | K*dw   | NY | *                          | *          | Kheisian       | Sys  |     |
| 75   | Dwyka                                 | Group     | C-Pd   | AP | Karoo                      | Supergroup | Carboniferous  | Sys  | Ca  |
| 75   | Dwyka                                 | Group     | C-Pd   | AP | Karoo                      | Supergroup | Permian        | Sys  | Ca  |
| 1083 | Dyasons Klip Gneiss                   | None      | N*dy   | NY | *                          | *          | Namaquan       | Sys  |     |
| 689  | Earls Court                           | Member    | Rea    | NY | Kimberley                  | Formation  | Randian        | Era  |     |
| 76   | Ecca                                  | Group     | Pe     | AP | Karoo                      | Supergroup | Permian        | Sys  |     |
| 277  | Eccles                                | Formation | Ve     | AP | Malmani                    | Subgroup   | Vaalian        | Era  |     |
| 659  | Eden                                  | Formation | Те     | AP | Kalahari                   | Group      | Tertiary       | Sys  |     |
| 240  | Edenville                             | Formation | Red    | AP | Klipriviersberg            | Group      | Randian        | Era  |     |

| CODE        | LITHO NAME                   | RANK       | LABEL              | ST | PARENT NAME    | RANK       | CHRONO<br>NAME | RANK | PUB |
|-------------|------------------------------|------------|--------------------|----|----------------|------------|----------------|------|-----|
| 864         | Eendoorn                     | Suite      | N*ee               | NY | *              | *          | Namaquan       | Sys  |     |
| 1720        | Eendragtpan                  | Formation  | TRee               | NY | Karoo          | Supergroup | Triassic       | Sys  |     |
| 966         | Eerlyk Bronzitite            | None       | Vee                | AP | Vlaktontein    | Subsuite   | Vaalian        | Era  |     |
| 149         | Eersteling                   | Formation  | Ze<br>Ni*ai        | AP | Pietersburg    | Group      | Swazian        | Era  |     |
| 570<br>952  | Elerdoppan                   | Formation  | IN <sup>+</sup> e1 | AP | Areachap<br>*  | Group<br>* | Damaquan       | Sys  |     |
| 002<br>1202 | Elandahara                   | Suite      | Dol                |    | Palfour        | Formation  | Dormion        | Era  | _   |
| 2205        | Elandsfontyn                 | Formation  | Tel                | NV | Sandveld       | Group      | Miocene        | Sor  |     |
| 1213        | Elandslaagte                 | Formation  | Rel                | NV | Government     | Subgroup   | Randian        | Era  | _   |
| 1986        | Elandsvlei                   | Formation  | C-Pe               | NY | Dwyka          | Group      | Carboniferous  | Svs  | MS  |
| 1986        | Elandsvlei                   | Formation  | C-Pe               | NY | Dwyka          | Group      | Permian        | Sys  | MS  |
| 723         | Ellie's Rust                 | Formation  | K*e                | AP | Matsap         | Subgroup   | Kheisian       | Sys  |     |
| 585         | Elliot                       | Formation  | TRe                | AP | Karoo          | Supergroup | Triassic       | Sys  |     |
| 229         | Elsburg                      | Formation  | Re                 | AP | Turffontein    | Subgroup   | Randian        | Ēra  |     |
| 1057        | Elsie Se Gorra Granite       | None       | N*el               | NY | Keimoes        | Suite      | Namaquan       | Sys  |     |
| 588         | Emakwezini                   | Formation  | Pem                | AP | Beaufort       | Group      | Permian        | Sys  |     |
| 836         | Empangeni Metamorphic        | Suite      | Zem                | NY | *              | *          | Swazian        | Era  |     |
| 450         | Endlovini                    | Formation  | N*en               | NY | Tugela         | Group      | Namaquan       | Sys  |     |
| 610         | Enon                         | Formation  | Je                 | AP | Uitenhage      | Group      | Jurassic       | Sys  |     |
| 788         | Enqhura                      | Member     | Qen                | AP | Amanzi         | Formation  | Pleistocene    | Ser  |     |
| 1003        | Entabeni Granite             | None       | Ven                | NY | *              | *          | Vaalian        | Era  |     |
| 877         | Equeefa                      | Suite      | N*e                | AP | *              | *          | Namaquan       | Sys  | Ca  |
| 553         | Eshowe                       | Member     | Oe                 | AP | Durban         | Formation  | Ordovician     | Sys  | LS  |
| 469         | Ezelfontein                  | Formation  | N*ez               | AP | Koras          | Group      | Namaquan       | Sys  | Ca  |
| 708         | Fairfield                    | Formation  | Vfa                | AP | Campbell Rand  | Subgroup   | Vaalian        | Era  |     |
| 787         | False Bay Coral<br>Limestone | Member     | Qfa                | AP | Bluff          | Formation  | Quaternary     | Sys  |     |
| 604         | Fenda                        | Formation  | Jf                 | AP | Bumbeni        | Complex    | Jurassic       | Sys  |     |
| 154         | Ferndale                     | Formation  | Zfe                | AP | Kraaipan       | Group      | Swazian        | Era  |     |
| 17          | Fig Tree                     | Group      | Zf                 | AP | Barberton      | Supergroup | Swazian        | Era  |     |
| 118         | Fish River                   | Subgroup   | C*f                | AP | Nama           | Group      | Cambrian       | Sys  |     |
| 512         | Flaminkberg                  | Formation  | Nfl                | AP | Vanrhynsdorp   | Group      | Namibian       | Era  | LS  |
| 664         | Florisbad                    | Formation  | Qf                 | AP | *              | *          | Pleistocene    | Ser  |     |
| 547         | Floriskraal                  | Formation  | Cf                 | AP | Lake Mentz     | Subgroup   | Carboniferous  | Sys  |     |
| 562         | Fort Brown                   | Formation  | Pf                 | AP | Ecca           | Group      | Permian        | Sys  |     |
| 484         | Franschhoek                  | Formation  | Nfr                | AP | Malmesbury     | Group      | Namibian       | Era  |     |
| 1155        | Franspoort Foyaite           | None       | N*tr               | AP | Pienaars River | Complex    | Namaquan       | Sys  |     |
| 838         | Free State Diorite           | Suite      | Rf                 | AP | Rooiwater      | Complex    | Randian        | Era  |     |
| 1034        | Friersdale Charnockite       | None       | N*t                | AP | Keimoes        | Suite      | Namaquan       | Sys  |     |
| 598<br>279  | Fripp                        | Formation  | Pfr                | AP | Karoo          | Supergroup | Permian        | Sys  |     |
| 270         | Frisco                       | Formation  | VII<br>V*fu        | AP | Mattaan        | Subgroup   | Vaalian        | Era  |     |
| 122         | Fundudzi                     | Formation  | K*iu<br>K*f        |    | Natsap         | Group      | Kheisian       | Sys  |     |
| 2024        | Gaarseen Gneiss              | None       | K*or               | NV | Vioolsdrif     | Suite      | Kheisian       | Sve  |     |
| 2024        | Gabain Granite               | None       | N*oh               | NY | *              | *          | Namaquan       | Sys  | _   |
| 1782        | Gabela                       | Formation  | Røb                | NY | Nkoneni        | Subgroup   | Randian        | Era  |     |
| 990         | Gaborone Granite             | Suite      | Rga                | AP | *              | *          | Randian        | Era  | _   |
| 2103        | Gais                         | Member     | Ngs                | NY | Grootderm      | Formation  | Namibian       | Era  | IP  |
| 2213        | Galputs Gneiss               | None       | N*gu               | NY | *              | *          | Namaquan       | Svs  |     |
| 312         | Gamagara                     | Formation  | Vgm                | AP | Olifantshoek   | Supergroup | Vaalian        | Era  |     |
| 529         | Gamka                        | Formation  | Dga                | AP | Ceres          | Subgroup   | Devonian       | Sys  | LS  |
| 894         | Gamoep Melilitite            | Suite      | Tga                | AP | *              | *          | Palaeocene     | Ser  |     |
| 792         | Gamohaan                     | Formation  | Vga                | AP | Campbell Rand  | Subgroup   | Vaalian        | Era  |     |
| 375         | Gams                         | Formation  | K*ga               | AP | Aggeneys       | Subgroup   | Kheisian       | Sys  |     |
| 67          | Gamtoos                      | Group      | Nga                | AP | *              | *          | Namibian       | Era  | Ca  |
| 2037        | Gannabos                     | Formation  | Ngb                | NY | Knersvlakte    | Subgroup   | Namibian       | Era  |     |
| 889         | Gannakouriep                 | Suite      | Ngn                | AP | *              | *          | Namibian       | Era  |     |
| 357         | Ganzenmond                   | Formation  | K*gz               | NY | Biesje Poort   | Group      | Kheisian       | Sys  |     |
| 2125        | Gareskop                     | Suite      | N*gs               | NY | *              | *          | Namaquan       | Sys  |     |
| 692         | Garfield                     | Member     | Rgr                | AP | Rietgat        | Formation  | Randian        | Era  |     |
| 832         | Gariep                       | Supergroup | Ng                 | AP | *              | *          | Namibian       | Era  | IP  |
| 453         | Gazeni                       | Formation  | N*ga               | AP | Lugela         | Group      | Namaquan       | Sys  |     |
| 1208        | Geelbeksdam                  | Member     | Vge                | AP | Vryburg        | Formation  | Vaalian        | Era  | LS  |
| 86          | Geluk                        | Subgroup   | Zge                | AP | Onverwacht     | Group      | Swazian        | Era  |     |

| CODE        | LITHO NAME                  | RANK      | LABEL                | ST          | PARENT NAME                | RANK       | CHRONO<br>NAME | RANK        | PUB |
|-------------|-----------------------------|-----------|----------------------|-------------|----------------------------|------------|----------------|-------------|-----|
| 1071        | Gemsbokbult Granite         | None      | N*ge                 | NY          | Keimoes                    | Suite      | Namaquan       | Sys         |     |
| 2208        | Gemsbokvlakte Gneiss        | None      | N*gv                 | NY          | *                          | *          | Namaquan       | Sys         |     |
| 2097        | George Batholith            | Batholith | N-C*g                | IF          | Cape Granite               | Suite      | Cambrian       | Sys         |     |
| 2097        | George Batholith            | Batholith | N-C*g                | IF          | Cape Granite               | Suite      | Namibian       | Era         | 0   |
| 376         | Geselskapbank               | Formation | K*ge                 | AP          | *                          | *          | Kheisian       | Sys         | Ca  |
| 2203        | Geyser Granite              | None      | Rgy                  | AP          | *                          | *          | Randian        | Era         | 0   |
| 495         | Gezwinds Kraal              | Formation | C*g                  | AP          | Kansa                      | Group      | Cambrian       | Sys         | Ca  |
| 10/8        | Ghaap<br>Cic Dan Causia     | Group     | Vg                   | IN Y        | I ransvaal                 | Supergroup | Vaalian        | Era         |     |
| 1700<br>511 | Gil berg Granite            | Crown     | Nai                  | IN I<br>NIV | Carion                     | Suite      | Namihian       | Sys<br>Erro |     |
| 20          | Giueni                      | Group     | Zai                  |             | *                          | *          | Swazion        | Era         |     |
| 20<br>858   | Gladkon                     | Suite     | K*ak                 | AP          | *                          | *          | Kheisian       | Sve         |     |
| 760         | Glen Heatlie                | Member    | Nol                  | AP          | Porterville                | Formation  | Namibian       | Era         |     |
| 724         | Glen Lvon                   | Formation | K*øl                 | AP          | Matsan                     | Suberoup   | Kheisian       | Svs         |     |
| 1136        | Glenmore Granite            | None      | N*øl                 | AP          | *                          | *          | Namaquan       | Sys         | Са  |
| 816         | Glenover Carbonatite        | Complex   | N*ø                  | AP          | *                          | *          | Namaquan       | Sys         | 0.  |
| 305         | Glentig                     | Formation | Vgl                  | AP          | Transvaal                  | Supergroup | Vaalian        | Era         |     |
| 681         | Gobosha Dacite              | Member    | Rgs                  | AP          | Amsterdam                  | Formation  | Randian        | Era         |     |
| 260         | Godwan                      | Formation | Rgo                  | AP          | Transvaal                  | Supergroup | Randian        | Era         |     |
| 359         | Goede Hoop                  | Formation | K*gh                 | AP          | Korannaland                | Supergroup | Kheisian       | Sys         |     |
| 1719        | Goedgedacht                 | Formation | Pgo                  | NY          | Karoo                      | Supergroup | Permian        | Sys         |     |
| 242         | Goedgenoeg                  | Formation | Rgg                  | NY          | Platberg                   | Group      | Randian        | Era         |     |
| 153         | Gold Ridge                  | Formation | Zgl                  | AP          | Kraaipan                   | Group      | Swazian        | Era         |     |
| 868         | Goodhouse                   | Subsuite  | K*gd                 | NY          | Vioolsdrif                 | Suite      | Kheisian       | Sys         |     |
| 1688        | Goraap                      | Suite     | N*go                 | NY          | *                          | *          | Kheisian       | Sys         |     |
| 661         | Gordonia                    | Formation | Qg                   | AP          | Kalahari                   | Group      | Quaternary     | Sys         |     |
| 523         | Goudini                     | Formation | Sg                   | AP          | Nardouw                    | Subgroup   | Silurian       | Sys         | LS  |
| 1674        | Goudini                     | Complex   | N*go                 | NY          | *                          | *          | Namaquan       | Sys         |     |
| 921         | Goudplaats Gneiss           | None      | Zgo                  | NY          | *                          | *          | Swazian        | Era         |     |
| 1031        | Gouskop Granite             | None      | N*gk                 | NY          | Keimoes                    | Suite      | Namaquan       | Sys         |     |
| 91          | Government                  | Subgroup  | Rg                   | AP          | West Rand                  | Group      | Randian        | Era         |     |
| 519         | Graafwater                  | Formation | Og                   | AP          | Table Mountain             | Group      | Ordovician     | Sys         | LS  |
| 655         | Grahamstown                 | Formation | Tg                   | AP          | *                          | *          | Tertiary       | Sys         |     |
| 673         | Granville Grove Oolite      | Bed       | Zgg                  | AP          | Sheba                      | Formation  | Swazian        | Era         |     |
| 49          | Grappies                    | Group     | K*g<br>N/C*          | NY          | *                          | *          | Kheisian       | Sys         | C   |
| 1987        | Graskop Granite             | None      | N/C*g<br>N/C*a       | AP          | Cape Granite               | Suite      | Cambrian       | Sys         | Ca  |
| 1987        | Graskop Granite             | INOME     | N/C <sup>+</sup> g   | AP          | Cape Granite               | Suite      | INamibian      | Era         | Ca  |
| 977         | Anorthosite                 | None      | Vgr                  | NY          | Rustenburg Layered         | Suite      | Vaalian        | Era         |     |
| 19          | Gravelotte                  | Group     | Zg                   | AP          | *                          | *          | Swazian        | Era         | 0   |
| 1988        | Greenlands                  | Formation | Zgr                  | AP          | *                          | *          | Swazian        | Era         | Ca  |
| 1/21        | Greenwich                   | Formation | I Kg                 | NY          | Karoo                      | Supergroup | Triassic       | Sys         |     |
| 2094        | Greyton Pluton              | Pluton    | N-C*gr               | IF          | Cape Granite               | Suite      | Cambrian       | Sys         |     |
| 2094        | Greylon Pluton              | Formation | IN-C <sup>+</sup> gr |             | Cape Granite               | Suite      | Khoisian       | Suc         |     |
| 2026        | Groondoring                 | Formation | K*gn                 | NV          | Khurishora                 | Subgroup   | Kheisian       | Sys         |     |
| 2020<br>491 | Groenefontein               | Formation | Nof                  | AD          | Capaco Caves               | Group      | Namibian       | Era         | Ca  |
| 968         | Groenfontein                | None      | Vof                  | AP          | Vlakfontein                | Subsuite   | Vaalian        | Era         | Ca  |
|             | Harzburgite                 |           | 18-                  |             |                            |            |                |             |     |
| /33         | Groot Drink                 | Member    | N*gr                 | NY          | Zonderhuis                 | Formation  | Namaquan       | Sys         |     |
| 2202        | Groot-Letaba Gneiss         | None      | Rgl                  | NY          | *                          | *          | Randian        | Era         | m   |
| 884         | Grootderm                   | Formation | Ngr                  | AP          | Gariep                     | Supergroup | Namibian       | Era         | IP  |
| 1607        | Grootegeluk                 | Formation | Pgr                  | NY          | Karoo                      | Supergroup | Permian        | Sys         |     |
| / 34        | Groothoek Mudstone          | Member    | K^gt<br>I∕*          | AP          | Aasvoelkop                 | Formation  | Kheisian       | Sys         |     |
| 98<br>12    | Guadom                      | Subgroup  | K≞gu                 | AP          | Bushmanland<br>Dait Daidag | Group      | Kneisian       | Sys<br>Ere  |     |
| 13          | Gumbu                       | Formation | Zgu                  | AP<br>NV    | Stiphfontoin               | Subaraua   | Namihian       | Era         |     |
| 1730<br>529 | Gumenavib                   | Formation | Da                   |             | Corros                     | Subgroup   | Devenien       | Suc         | τc  |
| 520         | Gyuo                        | romation  | Dg                   | Λľ          | Brakwater                  | Subgroup   | Devoman        | Sys         | LO  |
| 1232        | Haakdoorn                   | Formation | K*hk                 | NY          | Metamorphic                | Suite      | Kheisian       | Sys         |     |
| 1156        | Haakdoornfontein<br>Syenite | None      | N*ha                 | AP          | Pienaars River             | Complex    | Namaquan       | Sys         |     |
| 108         | Haib                        | Subgroup  | K*hb                 | AP          | Orange River               | Group      | Kheisian       | Sys         |     |
| 1122        | Halambu Gneiss              | None      | N*h                  | AP          | *                          | *          | Namaquan       | Sys         |     |

| CODE  | LITHO NAME             | RANK      | LABEL | ST   | PARENT NAME     | RANK       | CHRONO<br>NAME | RANK | PUB |
|-------|------------------------|-----------|-------|------|-----------------|------------|----------------|------|-----|
| 919   | Halfway House Granite  | None      | Zhh   | AP   | *               | *          | Swazian        | Era  |     |
| 685   | Hamberg Quartzite      | Member    | Rhm   | AP   | Promise         | Formation  | Randian        | Era  |     |
| 267   | Hampton                | Formation | Rhp   | AP   | Buffelsfontein  | Group      | Randian        | Era  |     |
| 2044  | Hangsfontein Granite   | None      | N*hf  | NY   | Spektakel       | Suite      | Namaquan       | Sys  |     |
| 1115  | Haramoep Gneiss        | None      | K*hr  | NY   | *               | *          | Kheisian       | Sys  |     |
| 1219  | Hardeberg Granodiorite | None      | N*hr  | NY   | *               | *          | Namaquan       | Sys  |     |
| 2017  | Hardevlakte Granite    | None      | N*hv  | NY   | Korridor        | Suite      | Namaquan       | Sys  |     |
| 1215  | Harmony                | Member    | Rhn   | NY   | Krugersdorp     | Formation  | Randian        | Era  |     |
| 992   | Harmony Granite        | None      | Rha   | AP   | *               | *          | Randian        | Era  |     |
| 777   | Harrismith             | Member    | TRh   | NY   | Normandien      | Formation  | Triassic       | Sys  |     |
| 807   | Hartbees River         | Complex   | K*h   | NY   | *               | *          | Kheisian       | Sys  |     |
| 1069  | Hartebeest Pan Granite | None      | N*ht  | NY   | Keimoes         | Suite      | Namaquan       | Sys  |     |
| 318   | Hartley                | Formation | K*ha  | AP   | Olifantshoek    | Supergroup | Kheisian       | Sys  |     |
| 920   | Hebron Granodiorite    | None      | Zhe   | NY   | *               | *          | Swazian        | Era  |     |
| 1211  | Hedley Plains          | Formation | K*hp  | NY   | Jacomyns Pan    | Group      | Kheisian       | Sys  |     |
| 404   | Heiroigas              | Formation | K*he  | NY   | Haib            | Subgroup   | Kheisian       | Sys  |     |
| 284   | Hekpoort               | Formation | Vh    | AP   | Pretoria        | Group      | Vaalian        | Era  |     |
| 2092  | Hermanus Pluton        | Pluton    | N-C*h | IF   | Cape Granite    | Suite      | Cambrian       | Sys  |     |
| 2092  | Hermanus Pluton        | Pluton    | N-C*h | IF   | Cape Granite    | Suite      | Namibian       | Era  |     |
| 531   | Hex River              | Formation | Dh    | AP   | Ceres           | Subgroup   | Devonian       | Sys  | LS  |
| 1234  | Heynskop               | Formation | Vhe   | NY   | Koegas          | Subgroup   | Vaalian        | Era  |     |
| 1779  | Highbury Pegmatite     | None      | N*hi  | AP   | Margate Granite | Suite      | Namaquan       | Sys  | Ca  |
| 883   | Hilda                  | Subgroup  | Nh    | AP   | Port Nolloth    | Group      | Namibian       | Era  | IP  |
| 841   | Hlagothi               | Suite     | Rhg   | NY   | *               | *          | Randian        | Era  | MS  |
| 1731  | Hlashana               | Formation | Rhs   | AP   | Mozaan          | Group      | Randian        | Era  |     |
| 166   | Hlathini               | Formation | Rht   | AP   | Nsuze           | Group      | Randian        | Era  | Ca  |
| 2138  | Hlatikulu Granite      | None      | Rhk   | NA   | *               | *          | Randian        | Era  |     |
| 843   | Hlelo Granite          | Suite     | Rhl   | AP   | Usushwana       | Complex    | Randian        | Era  |     |
| 810   | Hlobane                | Complex   | N*hl  | AP   | *               | *          | Namaquan       | Sys  |     |
| 933   | Hoed Granite           | None      | Rho   | AP   | Mashishimale    | Suite      | Randian        | Era  |     |
| 1197  | Hoedemaker             | Member    | Ph    | NY   | Teekloof        | Formation  | Permian        | Sys  |     |
| 2178  | Hoedjiespunt Granite   | None      | N*he  | NY   | Cape Granite    | Suite      | Namibian       | Era  |     |
| 886   | Holgat                 | Formation | Nho   | AP   | Port Nolloth    | Group      | Namibian       | Era  | IP  |
| 97    | Hom                    | Subgroup  | K*ho  | AP   | Bushmanland     | Group      | Kheisian       | Sys  |     |
| 504   | Homtini                | Formation | Nhm   | AP   | Kaaimans        | Group      | Namibian       | Era  |     |
| 131   | Hooggenoeg             | Formation | Zh    | AP   | Geluk           | Subgroup   | Swazian        | Era  |     |
| 860   | Hoogoor                | Suite     | K*hg  | AP   | *               | *          | Kheisian       | Sys  |     |
| 90    | Hospital Hill          | Subgroup  | Rh    | AP   | West Rand       | Group      | Randian        | Era  |     |
| 720   | Hotazel                | Formation | Vhz   | AP   | Voëlwater       | Subgroup   | Vaalian        | Era  |     |
| 381   | Hotson                 | Formation | K*ht  | AP   | Nab             | Subgroup   | Kheisian       | Sys  | LS  |
| 927   | Hout River Gneiss      | None      | Rhr   | NY   | *               | *          | Randian        | Era  |     |
| 295   | Houtenbek              | Formation | Vho   | AP   | Pretoria        | Group      | Vaalian        | Era  |     |
| 936   | Hugomond Granite       | None      | Rhu   | AP   | *               | *          | Randian        | Era  |     |
| 2.4.2 | II                     | E         | 1/2+1 | NINZ | Vyfbeker        | 0.14       | IZI t. t       | C .  |     |
| 342   | Hugosput               | Formation | K≞nu  | IN Y | Metamorphic     | Suite      | Kneisian       | Sys  |     |
| 492   | Huis Rivier            | Formation | Nhu   | AP   | Cango Caves     | Group      | Namibian       | Era  | LS  |
| 1144  | Humberdale Granite     | None      | N*hu  | AP   | *               | *          | Namaquan       | Sys  | Ca  |
| 2008  | Huns Limestone         | Member    | Nhn   | AP   | Urusis          | Formation  | Namibian       | Era  |     |
| 2193  | Hytkoras               | Formation | K*hy  | NY   | Kamiesberg      | Subgroup   | Kheisian       | Sys  |     |
| 620   | Igoda                  | Formation | Ki    | AP   | *               | *          | Cretaceous     | Sys  |     |
| 615   | Infanta                | Formation | J-Ki  | AP   | *               | *          | Cretaceous     | Sys  |     |
| 615   | Infanta                | Formation | J-Ki  | AP   | *               | *          | Jurassic       | Sys  |     |
| 1147  | Ingwe Granodiorite     | None      | N*ig  | AP   | *               | *          | Namaquan       | Sys  | Ca  |
| 000   | Inlandsee              | NT        | 7.    | NINZ | *               | *          | 0              | E    |     |
| 909   | Leucogranofels/Gneiss  | None      | Ζ1    | INI  |                 |            | Swazian        | Era  |     |
| 459   | Intuze                 | Formation | N*i   | AP   | Matigulu        | Group      | Namaquan       | Sys  |     |
| 062   | Ironstone Magnetite    | None      | V:    | ΔD   | Roossanaltal    | Subquito   | Valian         | Fra  |     |
| 902   | Gabbro                 | inone     | V 1   | ΛP   | KOOSSENEKAI     | Subsuite   | vaanan         | Era  |     |
| 594   | Irrigasie              | Formation | P-TRi | AP   | Karoo           | Supergroup | Permian        | Sys  |     |
| 594   | Irrigasie              | Formation | P-TRi | AP   | Karoo           | Supergroup | Triassic       | Sys  |     |
| 2148  | Isipingo               | Formation | Qi    | NY   | Maputuland      | Group      | Pleistocene    | Ser  |     |
| 344   | Jacomyns Pan           | Group     | K*j   | NY   | *               | *          | Kheisian       | Sys  |     |
| 954   | Jagdlust Harzburgite   | None      | Vj    | AP   | Croydon         | Subsuite   | Vaalian        | Era  |     |
| 2056  | Jakkalsfontein         | Formation | Mja   | NY   | Kamiesberg      | Subgroup   | Mokolian       | Era  |     |

| CODE     | LITHO NAME             | RANK       | LABEL | ST    | PARENT NAME             | RANK       | CHRONO<br>NAME | RANK | PUB  |
|----------|------------------------|------------|-------|-------|-------------------------|------------|----------------|------|------|
| 2047     | Jakkalshoek Granite    | None       | N*jk  | NY    | Spektakel               | Suite      | Namaquan       | Sys  |      |
| 371      | Jannelsepan            | Formation  | N*j   | NY    | Areachap                | Group      | Namaquan       | Sys  |      |
| 238      | Jeannette              | Formation  | Rje   | AP    | Klipriviersberg         | Group      | Randian        | Era  |      |
| 92       | Jeppestown             | Subgroup   | Rj    | AP    | West Rand               | Group      | Randian        | Era  |      |
| 1399     | Jerome Granite         | None       | Rjr   | NY    | *                       | *          | Randian        | Era  |      |
| 2048     | Jobs Kraal Charnockite | None       | N*jo  | NY    | *                       | *          | Namaquan       | Sys  |      |
| 138      | Joe's Luck             | Formation  | Zj    | AP    | Moodies                 | Group      | Swazian        | Era  |      |
| 93       | Johannesburg           | Subgroup   | Rjo   | AP    | Central Rand            | Group      | Randian        | Era  |      |
| 214      | Johnstone              | Member     | Rjh   | AP    | Randfontein             | Formation  | Randian        | Era  |      |
| 592      | Jozini                 | Formation  | Ji    | AP    | Lebombo                 | Group      | Jurassic       | Sys  |      |
| 388      | K'oumoesk'naap         | Formation  | K*kom | NY    | Khurisberg              | Subgroup   | Kheisian       | Sys  |      |
| 66       | Kaaimans               | Group      | Nk    | AP    | *                       | *          | Namibian       | Era  |      |
| 483      | Kaaimansgat            | Formation  | Nkm   | AP    | Malmesbury              | Group      | Namibian       | Era  |      |
| 507      | Kaan                   | Formation  | Nka   | NY    | Gamtoos                 | Group      | Namibian       | Era  |      |
| 916      | Kaap Valley Tonalite   | None       | Zkv   | AP    | *                       | *          | Swazian        | Era  | Ca   |
| 379      | Kabas                  | Formation  | K*ks  | NY    | Pella                   | Subgroup   | Kheisian       | Sys  |      |
| 1092     | Kabis Granite          | None       | N*ki  | NY    | Little Namaqualand      | Suite      | Namaquan       | Sys  |      |
| 1227     | Kaboom                 | Formation  | K*kb  | NY    | *                       | *          | Kheisian       | Sys  |      |
| 817      | Kaffirskraal           | Complex    | K*kf  | AP    | *                       | *          | Kheisian       | Sys  |      |
| 758      | Kaigas                 | Formation  | Nki   | AP    | Port Nolloth            | Group      | Namibian       | Era  | IP   |
| 1086     | Kakamas Suid Gneiss    | None       | N*ku  | NY    | *                       | *          | Namaquan       | Sys  |      |
| 84       | Kalahari               | Group      | C^k   | AP    | *                       | *          | Cenozoic       | Era  |      |
| 2035     | Kalk Gat               | Formation  | Nkg   | NY    | Knersvlakte             | Subgroup   | Namibian       | Era  |      |
| 1910     | Kalkkloof              | Complex    | Zka   | NY    | *                       | *          | Swazian        | Era  |      |
| 1187     | Kalkkop Breccia        | None       |       | NY    | *                       | *          | Phanerozoic    | Eon  |      |
| 474      | Kalkpunt               | Formation  | N*ka  | AP    | Koras                   | Group      | Namaquan       | Svs  | Са   |
| 1209     | Kalkput                | Member     | Vkk   | AP    | Vryburg                 | Formation  | Vaalian        | Era  | LS   |
| 2215     | Kalkylei Granite       | None       | N*kav | NY    | *                       | *          | Namaquan       | Svs  |      |
| 1046     | Kalkwerf Gneiss        | None       | N*kl  | NY    | *                       | *          | Namaguan       | Svs  |      |
| 323      | Kameel Puts            | Formation  | K*kn  | NY    | *                       | *          | Kheisian       | Sys  |      |
| 241      | Kameeldoorns           | Formation  | Rka   | AP    | Platherg                | Group      | Randian        | Era  |      |
| 1206     | Kameelfontein          | Formation  | Vka   | NY    | Koegas                  | Subgroup   | Vaalian        | Era  |      |
| 2104     | Kamiesherg             | Suberoup   | Mk    | NY    | Bushmanland             | Group      | Mokolian       | Era  |      |
| 1761     | Kamieskroon Gneiss     | None       | N*km  | NY    | *                       | *          | Namaquan       | Svs  |      |
| 387      | Kanonas                | Formation  | K*ka  | AP    | Khurishero              | Subgroup   | Kheisian       | Sys  | Ca   |
| 791      | Kanguru                | Member     | Vko   | AP    | Reivilo                 | Formation  | Vaalian        | Era  | ou   |
| 1029     | Kanoneiland Granite    | None       | N*kn  | NY    | Keimoes                 | Suite      | Namaquan       | Svs  |      |
| 115      | Kansa                  | Group      | C*ka  | AP    | *                       | *          | Cambrian       | Sys  | Ca   |
| 1192     | Kanve                  | Formation  | Rkn   | NY    | *                       | *          | Randian        | Era  | - Ca |
| 769      | Kareedouw Sandstone    | Member     | Dkr   | AP    | Baviaanskloof           | Formation  | Devonian       | Svs  | LS   |
| 2098     | Karelskraal            | Member     | Pka   | NY    | Abrahamskraal           | Formation  | Permian        | Sys  | 10   |
| 539      | Karies                 | Formation  | Dk    | AP    | Traka                   | Subgroup   | Devonian       | Sve  |      |
| 2042     | Karoeties Kon          | Formation  | Nkr   | NY    | Garien                  | Supergroup | Namibian       | Era  |      |
| 9        | Karoo                  | Supergroup | C-Ik  | AP    | *                       | *          | Carboniferous  | Sve  |      |
| 9        | Karoo                  | Supergroup | C-Ik  | AP    | *                       | *          | Iurassic       | Svs  |      |
| 9        | Karoo                  | Supergroup | C-Ik  | AP    | *                       | *          | Permian        | Svs  |      |
| 0        | Karoo                  | Supergroup | C Ik  | AP    | *                       | *          | Triassic       | Sve  |      |
| 2<br>801 | Karoo Dolerite         | Suite      | Id Id | NV    | *                       | *          | Intassic       | Sve  |      |
| 538      | Karoopoort             | Formation  | Dha   | AD    | Bidouw                  | Subgroup   | Dovonian       | Suc  |      |
| 576      | Kathorg                | Formation  | TRL   | ΔD    | Tarkastad               | Subgroup   | Triassic       | Suc  | MS   |
| 2140     | Kayoni                 | Mombor     | Clza  | NV    | Flandsvloi              | Eormation  | Carboniforous  | Suc  | 1115 |
| 1026     | Kaboos Granita         | None       | N*kb  | NV    | Kaimoos                 | Suito      | Namaguan       | Suc  |      |
| 1020     | Kebbes Granite         | None       | INKD  | 1 1 1 | Keimoes                 | Suite      | INamaquan      | 3y8  |      |
| 847      | Syenite                | Suite      | Rke   | NY    | *                       | *          | Randian        | Era  |      |
| 2004     | Keesenbosch Diorite    | None       | Nke   | NY    | *                       | *          | Namibian       | Era  |      |
| 861      | Keimoes                | Suite      | N*ke  | AP    | *                       | *          | Namaquan       | Sys  |      |
| 1011     | Kenhardt Migmatite     | None       | K*ke  | NY    | Vyfbeker<br>Metamorphic | Suite      | Kheisian       | Sys  |      |
| 1786     | Khiphunyawa            | Formation  | Rkh   | NY    | Odwaleni                | Subgroup   | Randian        | Era  |      |
| 456      | Khomo                  | Formation  | N*kh  | AP    | Tugela                  | Group      | Namaquan       | Sys  |      |
| 2025     | Khoromus Gneiss        | None       | K*km  | NY    | Vioolsdrif              | Suite      | Kheisian       | Sys  |      |
| 155      | Khunwana               | Formation  | Zkh   | AP    | Kraaipan                | Group      | Swazian        | Ēra  | +    |
| 105      | Khurisberg             | Subgroup   | K*kh  | AP    | Bushmanland             | Group      | Kheisian       | Sys  |      |
| 228      | Kimberlev              | Formation  | Rki   | AP    | Turffontein             | Subgroup   | Randian        | Era  |      |

| CODE        | LITHO NAME                   | RANK       | LABEL                       | ST       | PARENT NAME        | RANK       | CHRONO<br>NAME | RANK | PUB |
|-------------|------------------------------|------------|-----------------------------|----------|--------------------|------------|----------------|------|-----|
| 2206        | Kimberley Kimberlite         | Suite      | Kki                         | NY       | *                  | *          | Cretaceous     | Sys  |     |
| 646         | Kinkelbos                    | Formation  | C^ki                        | AP       | *                  | *          | Cenozoic       | Era  | LS  |
| 611         | Kirkwood                     | Formation  | J-Kk                        | AP       | Uitenhage          | Group      | Cretaceous     | Sys  |     |
| 611         | Kirkwood                     | Formation  | J-Kk                        | AP       | Uitenhage          | Group      | Jurassic       | Sys  |     |
| 694         | Klapperkop Quartzite         | Member     | Vkp                         | AP       | Timeball Hill      | Formation  | Vaalian        | Era  |     |
| 643         | Klein Brak                   | Formation  | Qk                          | AP       | Bredasdorp         | Group      | Pleistocene    | Ser  | LS  |
| 1715        | Klein Naute                  | Formation  | Vke                         | NY       | Campbell Rand      | Subgroup   | Vaalian        | Era  |     |
| 1067        | Klein Van Wykspan<br>Granite | None       | N*kv                        | NY       | Keimoes            | Suite      | Namaquan       | Sys  |     |
| 903         | Kleinbegin                   | Subsuite   | N*kle                       | NY       | Keimoes            | Suite      | Namaquan       | Sys  |     |
| 1181        | Kleinfontein Granite         | None       | C*kf                        | NY       | Cape Granite       | Suite      | Cambrian       | Sys  |     |
| 506         | Kleinrivier                  | Formation  | Nkl                         | NY       | Gamtoos            | Group      | Namibian       | Era  |     |
| 1053        | Klip Bakken Gneiss           | None       | N*klb                       | NY       | *                  | *          | Namaquan       | Sys  |     |
| 1025        | Klip Koppies Granite         | None       | N*klk                       | NY       | Keimoes            | Suite      | Namaquan       | Sys  |     |
| 514         | Klipbak                      | Formation  | C*kl                        | NY       | Brandkop           | Subgroup   | Cambrian       | Sys  |     |
| 536         | Klipbokkop                   | Formation  | Dkl                         | AP       | Bidouw             | Subgroup   | Devonian       | Sys  |     |
| 1158        | Klipdrift Syenite            | None       | N*kld                       | AP       | Pienaars River     | Complex    | Namaquan       | Sys  |     |
| 1708        | Klipfonteinheuwel            | Formation  | Vkf                         | NY       | Campbell Rand      | Subgroup   | Vaalian        | Era  |     |
| 68          | Klipheuwel                   | Group      | C*k                         | AP       | *                  | *          | Cambrian       | Sys  |     |
| 1762        | Kliphoek Granite             | None       | N*klh                       | NY       | Spektakel          | Suite      | Namaquan       | Sys  |     |
| 984         | Klipkloof Granite            | None       | Vki                         | AP       | Lebowa Granite     | Suite      | Vaalian        | Era  |     |
| 1032        | Klipkraal Granite            | None       | N*kli                       | NY       | Keimoes            | Suite      | Namaquan       | Sys  |     |
| 395         | Klipneus                     | Formation  | K*kl                        | AP       | Orange River       | Group      | Kheisian       | Sys  |     |
| 1711        | Klippan                      | Formation  | Vkl                         | NY       | Campbell Rand      | Subgroup   | Vaalian        | Era  |     |
| 486         | Klipplaat                    | Formation  | Nkp                         | AP       | Swartland          | Subgroup   | Namibian       | Era  |     |
| 1765        | Kliprand Charnockite         | None       | N*klr                       | NY       | Little Namaqualand | Suite      | Namaquan       | Sys  |     |
| 30          | Klipriviersberg              | Group      | Rk                          | AP       | Ventersdorp        | Supergroup | Randian        | Era  |     |
| 326         | Klipvlei                     | Formation  | K*kv                        | NY       | Droëboom           | Group      | Kheisian       | Sys  |     |
| 87          | Klipwal                      | Subgroup   | Rkl                         | NY       | Mozaan             | Group      | Randian        | Era  |     |
| 600         | Klopperfontein               | Formation  | TRkl                        | AP       | Karoo              | Supergroup | Triassic       | Sys  |     |
| 1157        | Kloppersbos Foyaite          | None       | N*klo                       | AP       | Pienaars River     | Complex    | Namaquan       | Sys  |     |
| 513         | Knersvlakte                  | Subgroup   | Nkn                         | AP       | Vanrhynsdorp       | Group      | Namibian       | Era  |     |
| 632         | Knysna                       | Formation  | Tk                          | AP       | *                  | *          | Miocene        | Ser  | LS  |
| 1/3/        | Koedoeslaagte                | Formation  | Kko                         | NY       | Jeppestown         | Subgroup   | Randian        | Era  |     |
| 1352        | Koedoesrand                  | Formation  | Vkd                         | NY       | *                  | *          | Vaalian        | Era  |     |
| 311         | Koegas                       | Subgroup   | Vk                          | AP       | Ghaap              | Group      | Vaalian        | Era  |     |
| 2029        | Koegel Fontein               | Complex    | Kk<br>IZ#1                  | NY       | *                  | *          | Cretaceous     | Sys  |     |
| 250         | Koeipoort Granite            | None       | K*kop                       | NY       | *                  | *          | Kheisian       | Sys  |     |
| 350         | Koekoepkop                   | Formation  | K*kok                       | NY       | *                  | *          | Kheisian       | Sys  |     |
| 856         | Koelmanskop<br>Metamorphic   | Suite      | K*kol                       | NY       | Hartbees River     | Complex    | Kheisian       | Sys  |     |
| 2122        | Koenap                       | Formation  | K*kn                        | NY       | Arribees           | Group      | Kheisian       | Sys  |     |
| 385         | Koeris                       | Formation  | K*koe                       | NY       | Zuurwater          | Subgroup   | Kheisian       | Sys  | MS  |
| 1102        | Koesie Se Dam Tonalite       | None       | N*ks                        | AP       | TOubep             | Suite      | Namaquan       | Sys  | Ca  |
| 1/12        | Kogelbeen                    | Formation  | Vko                         | NY       | Campbell Rand      | Subgroup   | Vaalian        | Era  |     |
| 331         | Kokerberg                    | Formation  | K*ko                        | AP       | De Kruis           | Group      | Kheisian       | Sys  |     |
| 964         | Kolobeng Norite              | None       | Vkb                         | AP       | Rustenburg Layered | Suite      | Vaalian        | Era  |     |
| 130         | Komati                       | Formation  | ZKO                         | AP       | Ijakastad          | Subgroup   | Swazian        | Era  |     |
| 892         | Komatipoort                  | Suite      | JK                          | NY       | *<br>              | *          | Jurassic       | Sys  | TC  |
| /63         | Kombuis                      | Member     | INKO                        | AP       | Matjies River      | Formation  | Namibian       | Era  | LS  |
| 125         | Kommadagga                   | Subgroup   | Ck                          | AP       | Witteberg          | Group      | Carboniterous  | Sys  |     |
| 2111        | Konkonsies Granite           | None       | N*kon                       | NY       | *<br>T'1 NT 1 1    | *          | Namaquan       | Sys  |     |
| 1020        | Konkyp Gneiss                | None       | IN*Ky                       | AP       | Little Namaqualand | Suite      | Namaquan       | Sys  |     |
| 1111        | Kontorogab Gneiss            | None       | K^kon<br>K*l                | NY       | *                  | *<br>C 1   | Kheisian       | Sys  |     |
| 400         | Kook River                   | Formation  | K*kor                       | AP       | De Ноор            | Subgroup   | Kheisian       | Sys  |     |
| 508         | Kooktontein                  | Formation  | PKK                         | NY       | Ecca               | Group      | Permian        | Sys  |     |
| 5/3         | Koonap                       | Formation  | PK                          | AP       | Adelaide           | Subgroup   | Permian        | Sys  |     |
| 1059        | Koomplaats                   | Nember     | PKf<br>V*L                  | IN Y     | Abranamskraal      | rormation  | Permian        | Sys  | _   |
| 2210        | Koos Viei Granite            | INOne      | K <sup>+</sup> KOO<br>NI*1  | 1<br>A D | *                  | *          | INamaquan      | Sys  | _   |
| 003<br>7    | Koperberg                    | Suite      | 1N <sup>+</sup> KO<br>1/*1. | AP       | *                  | *          | INamaquan      | Sys  | _   |
| (2          | Koran                        | Supergroup | IN''K<br>Ni*l-              |          | *                  | *          | Niensian       | Sys  | Ca  |
| 0.5<br>81.0 | Koringkonnieg                | Complet    | LN'K                        |          | *                  | *          | Khoisian       | Sys  | Ca  |
| 1697        | Korridor                     | Suite      | N#1-1                       | MV<br>NV | *                  | *          | Namagura       | Sys  | _   |
| 100/        | NUTHUUI                      | Suite      | TN KU                       | I N L    | 1.                 | 1.         | 1 Namaquan     | JJVS |     |

| CODE | LITHO NAME                          | RANK      | LABEL              | ST   | PARENT NAME                | RANK       | CHRONO<br>NAME | RANK | PUB |
|------|-------------------------------------|-----------|--------------------|------|----------------------------|------------|----------------|------|-----|
| 2146 | Kosi Bay                            | Formation | Qko                | NY   | Maputuland                 | Group      | Pleistocene    | Ser  |     |
| 1787 | Kosies                              | Formation | K*kos              | NY   | Khurisberg                 | Subgroup   | Kheisian       | Sys  |     |
| 1119 | Kotongweni Tonalite                 | None      | N*kg               | AP   | *                          | *          | Namaquan       | Sys  |     |
| 384  | Kouboom                             | Formation | K*kob              | NY   | Zuurwater                  | Subgroup   | Kheisian       | Sys  |     |
| 1014 | Kourop Migmatite                    | None      | K*kou              | NY   | Koelmanskop<br>Metamorphic | Suite      | Kheisian       | Sys  |     |
| 22   | Kraaipan                            | Group     | Zk                 | AP   | *                          | *          | Swazian        | Era  |     |
| 2195 | Kraal Bay                           | Member    | Qkr                | NY   | Langebaan                  | Formation  | Quaternary     | Sys  |     |
| 2219 | Kraalbosch Vlei Granite             | None      | N*kc               | NY   | *                          | *          | Namaquan       | Sys  |     |
| 1764 | Kraalkop Quartz Diorite             | None      | N*kk               | AP   | Keimoes                    | Suite      | Namaquan       | Sys  | Ca  |
| 337  | Kraandraai                          | Formation | K*kd               | NY   | Kamiesberg                 | Subgroup   | Kheisian       | Sys  |     |
| 111  | Kransberg                           | Subgroup  | K*kr               | AP   | Waterberg                  | Group      | Kheisian       | Sys  |     |
| 1749 | Kranskloof                          | Member    | Ok                 | AP   | Durban                     | Formation  | Ordovician     | Sys  | LS  |
| 1107 | Krom Puts Granite                   | None      | N*kp               | NY   | *                          | *          | Namaquan       | Sys  |     |
| 132  | Kromberg                            | Formation | Zkr                | AP   | Geluk                      | Subgroup   | Swazian        | Era  |     |
| 669  | Kromdraai                           | Formation | C^kr               | AP   | *                          | *          | Cenozoic       | Era  |     |
| 965  | Kroondal Norite                     | None      | Vkr                | NY   | Vlakfontein                | Subsuite   | Vaalian        | Era  |     |
| 219  | Krugersdorp                         | Formation | Rkr                | AP   | Johannesburg               | Subgroup   | Randian        | Era  |     |
| 819  | Kruidfontein Carbonatite            | Complex   | N*kr               | AP   | *<br>D. U.                 | *          | Namaquan       | Sys  |     |
| 401  | Kuams River                         | Formation | K^ku<br>C*1        | AP   | De Hoop                    | Subgroup   | Kheisian       | Sys  |     |
| 2145 | Kuboos Pluton                       | Pluton    | C^ku<br>N_C*1      | IF   | Kuboos-Bremen              | Suite      | Cambrian       | Sys  |     |
| 1689 | Kuboos-Bremen                       | Suite     | N-C*I              | IN Y | *                          | *          | Cambrian       | Sys  |     |
| 1689 | Kuboos-bremen                       | Suite     | N-C <sup>+</sup> K |      | *                          | *          | Namibian       | Era  | Ca  |
| 04/  | Kudus Kiooi                         | Subaraur  | C KU               | AP   | Name                       | C manage   | Nemihian       | Era  | Ca  |
| 110  | Kuibis<br>Kuilariniar Haldarbara    | Subgroup  | INKU               | AP   | Inama                      | Group      | Namibian       | Era  |     |
| 2085 | Batholith                           | Batholith | N-C*kh             | IF   | Cape Granite               | Suite      | Cambrian       | Sys  |     |
| 2085 | Kullsrivier-Helderberg<br>Batholith | Batholith | N-C*kh             | IF   | Cape Granite               | Suite      | Namibian       | Era  |     |
| 710  | Kuruman                             | Formation | Vku                | AP   | Asbestos Hills             | Subgroup   | Vaalian        | Era  |     |
| 302  | Kwaggasnek                          | Formation | Vkn                | AP   | Rooiberg                   | Group      | Vaalian        | Era  |     |
| 2016 | Kwakanab                            | Member    | Nkk                | NY   | Lekkersing                 | Formation  | Namibian       | Era  |     |
| 1709 | Kwanous                             | Subgroup  | Nkw                | NY   | Vanrhynsdorp               | Group      | Namibian       | Era  |     |
| 1304 | Kwarriehoek                         | Formation | Vkw                | AP   | Makeckaan                  | Subgroup   | Vaalian        | Era  | Ca  |
| 1041 | Kweekfontein Granite                | None      | N*kf               | AP   | Korridor                   | Suite      | Namaquan       | Sys  |     |
| 546  | Kweekvlei                           | Formation | Ckw                | AP   | Lake Mentz                 | Subgroup   | Carboniferous  | Sys  | 6   |
| 1099 | Kwessiedam Granite                  | None      | N*kW               | AP   | T Oubep                    | Suite      | Namaquan       | Sys  | Ca  |
| 1/05 | Kwetta Granite                      | Formation | 71£                |      | C marsh atta               | C norm     | Sananian       | Era  |     |
| 143  | La France                           | None      | C*1                |      | Gravelotte                 | Group      | Swazian        | Era  | Ca  |
| 1969 | Laborie Granite                     | Formation | D1                 |      | Cape Granite               | Crown      | Dormion        | Sys  |     |
| 124  | Laligsburg                          | Subgroup  | C1                 |      | Witteborg                  | Group      | Carboniferous  | Sys  | LS  |
| 202  | Lakenvalei                          | Formation | Vla                | AD   | Pretoria                   | Group      | Vaalian        | Era  |     |
| 1188 | Lamberts Bay Breccia -<br>Basalt    | None      | Via                | NY   | *                          | *          | Phanerozoic    | Eon  |     |
| 1990 | Lammershoek Granite                 | None      | N/C*1              | AP   | Cape Granite               | Suite      | Cambrian       | Sue  | Ca  |
| 1990 | Lammershoek Granite                 | None      | N/C*1              | AP   | Cape Granite               | Suite      | Namihian       | Era  | Ca  |
| 2051 | Landplaas Gneiss                    | None      | N*ln               | NY   | Little Namaqualand         | Suite      | Namaquan       | Svs  | -0a |
| 869  | Lange Kolk                          | Suite     | N*ln               | NY   | *                          | *          | Namaquan       | Sys  |     |
| 1330 | Langebaan                           | Formation | 01                 | AP   | Sandveld                   | Group      | Quaternary     | Sys  | MS  |
| 182  | Langfontein                         | Formation | Rla                | NY   | Ozwana                     | Subgroup   | Randian        | Era  |     |
| 2198 | Langkrans                           | Formation | Rln                | NY   | *                          | *          | Randian        | Era  |     |
| 1040 | Lat River Granite                   | None      | N*la               | AP   | *                          | *          | Namaquan       | Svs  |     |
| 982  | Lease Granite                       | None      | Vls                | AP   | Lebowa Granite             | Suite      | Vaalian        | Era  |     |
| 78   | Lebombo                             | Group     | 11                 | AP   | Karoo                      | Supergroup | Iurassic       | Svs  | MS  |
| 851  | Lebowa Granite                      | Suite     | Vle                | AP   | Bushveld                   | Complex    | Vaalian        | Ēra  |     |
| 1164 | Ledig Foyaite                       | None      | N*lg               | AP   | Pilanesberg                | Complex    | Namaquan       | Sys  |     |
| 373  | Leerkrans                           | Formation | N*lr               | AP   | Wilgenhoutsdrif            | Group      | Namaquan       | Sys  |     |
| 472  | Leeuwdraai                          | Formation | N*ld               | AP   | Koras                      | Group      | Namaquan       | Sys  | Ca  |
| 880  | Leeuwfontein                        | Suite     | N*lf               | AP   | Pienaars River             | Complex    | Namaquan       | Sys  |     |
| 1159 | Leeuwkraal Phonolite                | None      | N*lk               | AP   | Pienaars River             | Complex    | Namaquan       | Sys  |     |
| 297  | Leeuwpoort                          | Formation | Vlw                | AP   | Pretoria                   | Group      | Vaalian        | Era  |     |
| 1128 | Leisure Bay                         | Formation | N*le               | AP   | Mzimkulu                   | Group      | Namaquan       | Sys  | Ca  |
| 2211 | Lekkerdrink Gneiss                  | None      | K*ld               | NY   | *                          | *          | Namaquan       | Svs  |     |

| CODE       | LITHO NAME                       | RANK      | LABEL      | ST   | PAREN'T NAME             | RANK       | CHRONO<br>NAME | RANK          | PUB |
|------------|----------------------------------|-----------|------------|------|--------------------------|------------|----------------|---------------|-----|
| 914        | Lekkerloop Granite               | None      | Zle        | NY   | *                        | *          | Swazian        | Era           |     |
| 756        | Lekkersing                       | Formation | Nl         | AP   | Stinkfontein             | Subgroup   | Namibian       | Era           | IP  |
| 934        | Lekkersmaak Granite              | None      | Rle        | AP   | Vorster                  | Suite      | Randian        | Era           |     |
| 1991       | Lemoenkloof Granite              | None      | N/C*le     | AP   | Cape Granite             | Suite      | Cambrian       | Svs           | Ca  |
| 1991       | Lemoenkloof Granite              | None      | N/C*le     | AP   | Cape Granite             | Suite      | Namibian       | Era           | Ca  |
| 391        | Lemoenpoort                      | Formation | K*le       | NY   | Khurisberg               | Subgroup   | Kheisian       | Sys           | 0.  |
| 959        | Leolo Mountain Gabbro-<br>Norite | None      | Vll        | AP   | Dsjate                   | Subsuite   | Vaalian        | Era           |     |
| 2201       | Leshareng Porphyry               | None      | Vlh        | NY   | Bushveld                 | Complex    | Vaalian        | Era           |     |
| 591        | Letaba                           | Formation | Jle        | AP   | Lebombo                  | Group      | Jurassic       | Sys           |     |
| 142        | Leydsdorp                        | Formation | Zl         | AP   | Gravelotte               | Group      | Swazian        | Era           |     |
| 1060       | Liefdood Granite                 | None      | N*li       | NY   | Keimoes                  | Suite      | Namaquan       | Sys           |     |
| 932        | Lillie Granite                   | None      | Rll        | AP   | Mashishimale             | Suite      | Randian        | Era           |     |
| 709        | Lime Acres                       | Member    | Vli        | NY   | Kogelbeen                | Formation  | Vaalian        | Era           |     |
| 505        | Lime Bank                        | Formation | Nli        | NY   | Gamtoos                  | Group      | Namibian       | Era           |     |
| 820        | Lindeques Drift                  | Complex   | K*li       | AP   | *                        | *          | Kheisian       | Svs           |     |
| 1722       | Lisbon                           | Formation | TRI        | NY   | Karoo                    | Supergroup | Triassic       | Svs           |     |
| 859        | Little Namagualand               | Suite     | N*1        | AP   | *                        | *          | Namaquan       | Svs           |     |
| 216        | Livingstone                      | Member    | Rli        | AP   | Randfontein              | Formation  | Randian        | Era           |     |
| 2104       | Longiomerate                     | <b>F</b>  | 01.        | NTSZ | 17 1 1                   | C          | 0              | C .           |     |
| 2194       | Lonely                           | Formation | QIO        | INY  | Kalahari                 | Group      | Quaternary     | Sys           |     |
| 328        | Longsiekvlei                     | Formation | K*lo<br>D1 | IN Y | Droeboom                 | Group      | Kheisian       | Sys           |     |
| 239        | Loraine                          | Formation | Klo        | AP   | Klipriviersberg          | Group      | Kandian        | Era           |     |
| 821        | Losberg                          | Complex   | K*l        | AP   | *                        | *          | Kheisian       | Sys           |     |
| 304        | Loskop                           | Formation | Vlo        | AP   | Transvaal                | Supergroup | Vaalian        | Era           |     |
| 2058       | Louisrus                         | Formation | Mlr        | NY   | Kamiesberg               | Subgroup   | Mokolian       | Era           |     |
| 1024       | Louisvale Granite                | None      | N*lo       | NY   | Keimoes                  | Suite      | Namaquan       | Sys           |     |
| 1289       | Lower                            | Zone      | Vl         | IF   | Rustenburg Layered       | Suite      | Vaalian        | Era           |     |
| 158        | Lubana                           | Formation | Zlu        | NY   | Empangeni<br>Metamorphic | Suite      | Swazian        | Era           |     |
| 186        | Lubanjana                        | Formation | Rlb        | NY   | Klipwal                  | Subgroup   | Randian        | Era           |     |
| 317        | Lucknow                          | Formation | K*lu       | AP   | Olifantshoek             | Supergroup | Kheisian       | Sys           |     |
| 217        | Luipaardsvlei                    | Formation | Rl         | AP   | Johannesburg             | Subgroup   | Randian        | Era           |     |
| 963        | Luipershoek Olivine<br>Diorite   | None      | Vlu        | AP   | Roossenekal              | Subsuite   | Vaalian        | Era           |     |
| 752        | Lukin Quartzite                  | Member    | K*lk       | AP   | Nzhelele                 | Formation  | Kheisian       | Sve           |     |
| 929        | Lunsklin Granite                 | None      | Rhi        | AP   | Mashashane               | Suite      | Randian        | Era           | IP  |
| 1050       | Lutzoute Gooice                  | None      | Ni*lu      | NV   | *                        | *          | Namaquan       | Sve           | 11  |
| 608        | Lutzputs Offerss                 | Member    | Vld        | AD   | Silverton                | Formation  | Vaalian        | Era           |     |
| 276        | Lyttelion                        | Formation | Vlv        | AP   | Malmani                  | Subgroup   | Vaalian        | Era           |     |
| 1185       | Maalgatan Granita                | None      | C*ma       | NV   | Capo Granito             | Subgroup   | Cambrian       | Suc           |     |
| 167        | Mabaloni                         | Formation | Renl       | ΔD   | Neuzo                    | Group      | Randian        | Ero           | Ca  |
| 107        | Mabiliowo                        | Formation | K*ma       |      | Soutpanshora             | Group      | Khoisian       | Suc           | Ca  |
| 425        | Mabin                            | Formation | Reph       |      | Wollyborg                | Group      | Randian        | Ero           | MS  |
| 205        | MacKop                           | Formation | Zmc        |      | Gravalatta               | Group      | Swozion        | Era           | WI3 |
| 14J<br>812 | Macala                           | Complex   | N*mac      |      | *                        | *          | Namaguan       | Suc           |     |
| 1767       | Magatao Cranito                  | None      | Pma        | AD   | *                        | *          | Pandian        | - Sys<br>Erro |     |
| 607        | Machadadam                       | Mombor    | Vmc        | AD   | Cilmonton                | Formation  | Vaslian        | Era           |     |
| 1002       | Madiagala Suggita                | Nenne     | Zma        | NIV  | Dait Daidan              | Complex    | V aanan        | Бла           |     |
| 1002       | Madiapaia Syenite                | None      | Zmp        |      | Deit Dridge              | Complex    | Swazian        | Era           |     |
| 0/0<br>50( | Madola Shale                     | Member    | Rmad       | AP   | Singeni                  | Formation  | Randian        | Era           |     |
| 596<br>200 | Madzaringwe                      | Formation | Pma        | AP   | Karoo                    | Supergroup | Permian        | Sys           |     |
| 289        | Magaliesberg                     | Formation | Vmg        | AP   | Pretoria                 | Group      | Vaalian        | Era           |     |
| 961        | Gabbronorite                     | None      | Vmh        | AP   | Roossenekal              | Subsuite   | Vaalian        | Era           |     |
| 1698       | Magongolozi                      | Formation | Zmg        | AP   | Nondweni                 | Group      | Swazian        | Era           | Ca  |
| 517        | Magrug                           | Formation | C*m        | NY   | Klipheuwel               | Group      | Cambrian       | Sys           |     |
| 1766       | Mahamba Gneiss                   | None      | Zmb        | NY   | *                        | *          | Swazian        | Era           |     |
| 1145       | Mahlongwa Granite                | None      | N*mah      | AP   | *                        | *          | Namaquan       | Sys           | Ca  |
| 212        | Main                             | Formation | Rma        | AP   | Iohannesburg             | Subgroup   | Randian        | Era           |     |
| 1291       | Main                             | Zone      | Vm         | IF   | Rustenburg Lavered       | Suite      | Vaalian        | Era           |     |
| 670        | Makapansgat                      | Formation | C^ma       | AP   | *                        | *          | Cenozoic       | Era           |     |
| 434        | Makasana                         | Formation | N*mak      | AP   | Ntingwe                  | Group      | Namaquan       | Svs           |     |
| 621        | Makatini                         | Formation | Kma        | AP   | Zululand                 | Group      | Cretaceous     | Svs           |     |
| 299        | Makeckaan                        | Subgroup  | Vmk        | AP   | Pretoria                 | Group      | Vaalian        | Era           | Ca  |
| CODE | LITHO NAME                        | RANK      | LABEL            | ST  | PARENT NAME        | RANK          | CHRONO<br>NAME | RANK       | PUB  |
|------|-----------------------------------|-----------|------------------|-----|--------------------|---------------|----------------|------------|------|
| 419  | Makgabeng                         | Formation | K*mk             | AP  | Matlabas           | Subgroup      | Kheisian       | Sys        |      |
| 313  | Makganyene                        | Formation | Vmy              | AP  | Postmasburg        | Group         | Vaalian        | Era        | LS   |
| 967  | Makgope Bronzitite                | None      | Vmz              | AP  | Vlakfontein        | Subsuite      | Vaalian        | Era        |      |
| 987  | Makhutso Granite                  | None      | Vmu              | AP  | Lebowa Granite     | Suite         | Vaalian        | Era        |      |
| 922  | Makhutswi Gneiss                  | None      | Zmk              | AP  | *                  | *             | Swazian        | Era        |      |
| 243  | Makwassie                         | Formation | Rmk              | AP  | Platberg           | Group         | Randian        | Era        |      |
| 14   | Malala Drift                      | Group     | Zma              | AP  | Beit Bridge        | Complex       | Swazian        | Era        |      |
| 95   | Malmani                           | Subgroup  | Vma              | AP  | Chuniespoort       | Group         | Vaalian        | Era        |      |
| 64   | Malmesbury                        | Group     | Nm               | AP  | *                  | *             | Namibian       | Era        |      |
| 2088 | Malmesbury Batholith              | Batholith | N-C*m            | IF  | Cape Granite       | Suite         | Cambrian       | Sys        | Ca   |
| 2088 | Malmesbury Batholith              | Batholith | N-C*m            | IF  | Cape Granite       | Suite         | Namibian       | Era        | Ca   |
| 624  | Malvernia                         | Formation | Kml              | AP  | *                  | *             | Cretaceous     | Sys        |      |
| 814  | Mambulu                           | Complex   | N*mam            | AP  | *                  | *             | Namaquan       | Sys        |      |
| 741  | Manaka Arkose                     | Member    | K*mn             | AP  | Blouberg           | Formation     | Kheisian       | Sys        |      |
| 187  | Mandeva                           | Formation | Rman             | AP  | Klipwal            | Subgroup      | Randian        | Era        |      |
| 174  | Mankane                           | Formation | Rmn              | AP  | Nsuze              | Group         | Randian        | Era        |      |
| 1165 | Mankwe                            | Formation | N*man            | AP  | Pilanesberg        | Complex       | Namaquan       | Sys        |      |
| 176  | Mantonga                          | Formation | Rmg              | AP  | Nsuze              | Group         | Randian        | Era        |      |
| 444  | Manyane                           | Formation | N*mav            | AP  | Tugela             | Group         | Namaguan       | Svs        |      |
| 433  | Manzawayo                         | Formation | N*maa            | AP  | Ntingwe            | Group         | Namaguan       | Svs        |      |
| 316  | Manedi                            | Formation | K*mp             | AP  | Olifantshoek       | Supergroup    | Kheisian       | Sys        |      |
| 978  | Mapela Gabbro-Norite              | None      | Vme              | NY  | Rustenburg Lavered | Suite         | Vaalian        | Era        |      |
| 960  | Mapoch Gabbronorite               | None      | Vmn              | AP  | Dsiate             | Subsuite      | Vaalian        | Era        |      |
| 872  | Mapumulo                          | Group     | N*m              | AD  | *                  | *             | Namaculan      | Sve        | Ca   |
| 1676 | Maputaland                        | Group     | $C^m$            | NV  | *                  | *             | Copozoia       | Ero        | Ca   |
| 211  | Manajahung                        | Formation | Dmr              | AD  | Iohannashura       | Subaraua      | Pandian        | Era        |      |
| 211  | Maranda Creatite                  | Naga      | Dimen            | NV  | jonannesburg       | subgroup<br>* | Dandian        | Ena        |      |
| 1120 | Marahua Granite                   | Easter    | Nittai<br>Nittan | AD  | Muine laulu        | Carrie        | Nanuan         | E1a<br>Sme | Ca   |
| 072  | Marble Della                      | Formation | IN"mad           | AP  | wizimkulu          | Group         | Namaquan       | Sys        | Ca   |
| 8/3  | Margate Granite                   | Suite     | N^ma<br>N        | AP  | *<br>D · 1 T 1     | *             | Namaquan       | Sys        | Ca   |
| 2002 | Marginal                          | Zone      | Vmr              | IF  | Rustenburg Layered | Suite         | Vaalian        | Era        | TO   |
| 1/24 | Mariannhill                       | Formation | Om               | AP  | Natal              | Group         | Ordovician     | Sys        | LS   |
| /3/  | Marken Conglomerate               | Member    | K*mr             | AP  | Mogalakwena        | Formation     | Kheisian       | Sys        |      |
| /15  | Marthaspoort                      | Member    | Vms              | AP  | Gamagara           | Formation     | Vaalian        | Era        |      |
| 631  | Martindale                        | Formation | Tm               | AP  | *                  | *             | Tertiary       | Sys        |      |
| 26   | Marydale                          | Group     | Rmy              | AP  | *                  | *             | Randian        | Era        |      |
| 845  | Mashashane                        | Suite     | Rmh              | AP  | *                  | *             | Randian        | Era        | IP   |
| 846  | Mashishimale                      | Suite     | Rmas             | AP  | *                  | *             | Randian        | Era        |      |
| 630  | Masotcheni                        | Formation | Qm               | AP  | *                  | *             | Quaternary     | Sys        |      |
| 178  | Maswili                           | Formation | Rmsw             | NY  | Nsuze              | Group         | Randian        | Era        |      |
| 971  | Mathlagame Norite-<br>Anorthosite | None      | Vmt              | AP  | Schilpadnest       | Subsuite      | Vaalian        | Era        |      |
| 1124 | Mati Granite                      | None      | N*mat            | AP  | *                  | *             | Namaquan       | Svs        |      |
| 62   | Matigulu                          | Group     | N*mao            | NY  | *                  | *             | Namaquan       | Sys        |      |
| 438  | Matiowe                           | Formation | N*maw            | AP  | Mfongosi           | Group         | Namaquan       | Sys        |      |
| 490  | Matijes River                     | Formation | Nma              | AP  | Cango Caves        | Group         | Namibian       | Era        | IS   |
| 1791 | Matijesfontein Chert              | Bed       | Pmt              | AP  | Collingham         | Eormation     | Permian        | Sve        | IS   |
| 110  | Matlabas                          | Subgroup  | K*mb             | AD  | Waterberg          | Group         | Kheisian       | Sve        |      |
| 004  | Matlabas<br>Matlala Granita       | Nope      | Vml              |     | *                  | *             | Vaclian        | Ero        |      |
| 027  | Matala Granite                    | None      | Pent             |     | *                  | *             | Pandian        | Era        |      |
| 210  | Matok Granite                     | Subaraur  | Killit<br>V*m    |     | Valaz              | Carrie        | Kanuan         | E1a<br>Sme |      |
| 519  | Matsap                            | Subgroup  | K™m              | AP  | volop              | Group         | Kneisian       | Sys        |      |
| 1770 | Peridotite                        | None      | Zms              | AP  | *                  | *             | Swazian        | Era        | Ca   |
| 439  | Mazula                            | Formation | N*maz            | AP  | Mfongosi           | Group         | Namaquan       | Sys        |      |
| 1771 | Mbizana Microgranite              | None      | N*mb             | AP  | *                  | *             | Namaquan       | Sys        | Ca   |
| 1992 | Mbizane                           | Formation | Pmb              | AP  | Dwyka              | Group         | Permian        | Sys        | LS   |
| 617  | Mbotyi                            | Formation | Kmb              | AP  | *                  | *             | Cretaceous     | Sys        |      |
| 171  | Mdlelanga                         | Formation | Rmd              | AP  | Nsuze              | Group         | Randian        | Era        |      |
| 995  | Meinhardskraal Granite            | None      | Rmi              | AP  | *                  | *             | Randian        | Era        |      |
| 2170 | Melkboomfontein                   | None      | Rmel             | NY  | *                  | *             | Randian        | Era        |      |
| 1750 | Granite                           |           | 0                | 4.5 | D 1                | P             | 0.1            | 0          | T.O. |
| 1752 | Melmoth                           | Member    | Ome              | AP  | Durban             | Formation     | Ordovician     | Sys        | LS   |
| 996  | Meriri Granite                    | None      | Rme              | AP  | *                  | *             | Kandian        | Era        |      |
| 1768 | Mesklip Granite                   | None      | N*me             | NY  | Little Namaqualand | Suite         | Namaquan       | Sys        |      |
| 834  | Messina                           | Suite     | Zme              | AP  | Beit Bridge        | Complex       | Swazian        | Era        |      |

| CODE        | LITHO NAME                            | RANK      | LABEL     | ST          | PARENT NAME                | RANK          | CHRONO<br>NAME | RANK      | PUB |
|-------------|---------------------------------------|-----------|-----------|-------------|----------------------------|---------------|----------------|-----------|-----|
| 60          | Mfongosi                              | Group     | N*mf      | AP          | *                          | *             | Namaquan       | Sys       |     |
| 156         | Mhlatuze                              | Formation | Zmh       | NY          | *                          | *             | Swazian        | Era       |     |
| 574         | Middleton                             | Formation | Pm        | AP          | Adelaide                   | Subgroup      | Permian        | Sys       |     |
| 597         | Mikambeni                             | Formation | Pmi       | AP          | Karoo                      | Supergroup    | Permian        | Sys       |     |
| 549         | Miller                                | Formation | Cm        | AP          | Kommadagga                 | Subgroup      | Carboniferous  | Sys       |     |
| 2204        | Milnerton                             | Formation | Qmi       | NY          | *                          | *             | Pleistocene    | Ser       |     |
| 609         | Mimosa                                | Formation | Jmi       | AP          | Suurberg                   | Group         | Jurassic       | Sys       | Ca  |
| 1094        | Mission Granite/Gneiss                | None      | N*ms      | NY          | *                          | *             | Namaquan       | Sys       |     |
| 183         | Mkaya                                 | Formation | Rmka      | NY          | Klipwal                    | Subgroup      | Randian        | Era       |     |
| 876         | Mkomazi Gneiss                        | None      | N*mk      | AP          | *                          | *             | Namaquan       | Sys       | Ca  |
| 1120        | Mkondeni Diorite                      | None      | N*mn      | NY          | *                          | *             | Namaquan       | Sys       |     |
| 184         | Mkuzane                               | Formation | Rmz       | NY          | Ozwana                     | Subgroup      | Randian        | Era       |     |
| 815         | Mlalazi                               | Complex   | N*ml      | AP          | *                          | *             | Namaquan       | Svs       |     |
| 2141        | Mliba Granodiorite                    | None      | Zmi       | NA          | *                          | *             | Swazian        | Ēra       |     |
| 743         | Mmallebogos Grit                      | Member    | K*mm      | AP          | Blouberg                   | Formation     | Kheisian       | Svs       |     |
| 618         | Mngazana                              | Formation | Kmn       | AP          | *                          | *             | Cretaceous     | Svs       |     |
| 190         | Modderfontein                         | Formation | Rmf       | AP          | Doornfontein               | Subgroup      | Randian        | Era       |     |
|             | Modderfontein                         |           |           |             |                            | 0             |                | 0         |     |
| 1769        | Granite/Gneiss                        | None      | N*md      | NY          | Little Namaqualand         | Suite         | Namaquan       | Sys       |     |
| 336         | Moddergat Gneiss                      | None      | K*md      | NY          | *                          | *             | Kheisian       | Sys       |     |
| 1182        | Modderkloof<br>Granodiorite           | None      | N/C*md    | NY          | Cape Granite               | Suite         | Cambrian       | Sys       |     |
| 1182        | Modderkloof<br>Granodiorite           | None      | N/C*md    | NY          | Cape Granite               | Suite         | Namibian       | Era       |     |
| 803         | Modipe                                | Complex   | Zmo       | AP          | *                          | *             | Swazian        | Era       |     |
| 420         | Mogalakwena                           | Formation | K*mo      | AP          | Kransberg                  | Subgroup      | Kheisian       | Sys       |     |
| 882         | Mogashoa                              | Suite     | N*mo      | AP          | *                          | *             | Namaquan       | Sys       |     |
| 660         | Mokalanen                             | Formation | C^mo      | NY          | Kalahari                   | Group         | Cenozoic       | Era       |     |
| 980         | Molendraai Magnetite<br>Gabbro        | None      | Vmn       | NY          | Rustenburg Layered         | Suite         | Vaalian        | Era       |     |
| 938         | Moletsi Granite                       | None      | Rmol      | AP          | *                          | *             | Randian        | Era       |     |
| 584         | Molteno                               | Formation | TRm       | AP          | Karoo                      | Supergroup    | Triassic       | Sys       | MS  |
| 168         | Mome                                  | Formation | Rmm       | AP          | Nsuze                      | Group         | Randian        | Era       | Ca  |
| 230         | Mondeor                               | Formation | Rmo       | AP          | Turffontein                | Subgroup      | Randian        | Era       |     |
| 275         | Monte Christo                         | Formation | Vmo       | AP          | Malmani                    | Subgroup      | Vaalian        | Era       |     |
| 706         | Monteville                            | Formation | Vmv       | AP          | Campbell Rand              | Subgroup      | Vaalian        | Era       |     |
| 1993        | Montvue Granite                       | None      | N/C*m     | AP          | Cape Granite               | Suite         | Cambrian       | Svs       | Ca  |
| 1993        | Montvue Granite                       | None      | N/C*m     | AP          | Cape Granite               | Suite         | Namibian       | Ēra       | Ca  |
| 18          | Moodies                               | Group     | Zm        | AP          | Barberton                  | Supergroup    | Swazian        | Era       |     |
| 721         | Mooidraai                             | Formation | Vmd       | AP          | Voëlwater                  | Subgroup      | Vaalian        | Era       |     |
| 956         | Mooihoek Pyroxenite                   | None      | Vmi       | AP          | Dwars River                | Subsuite      | Vaalian        | Era       |     |
| 976         | Moorddrift Harzburgite-<br>Pyrovenite | None      | Vmf       | NY          | Zoetveld                   | Subsuite      | Vaalian        | Era       | MS  |
| 1198        | Moordenaars                           | Member    | Pmo       | NY          | Abrahamskraal              | Formation     | Permian        | Sue       |     |
| 488         | Moorreesburg                          | Formation | Nmo       | AP          | Swartland                  | Subgroup      | Namihian       | Era       |     |
| 030         | Mosita Granita                        | None      | Rmos      | NV          | *                          | subgroup<br>* | Randian        | Ero       |     |
| 744         | Mositono Conglomorato                 | Mombor    | K*mc      |             | Blouborg                   | Formation     | Khoisian       | Suc       |     |
| 147         | Moshiba                               | Formation | Zmt       |             | Diotorchurg                | Group         | Swazion        | Ero       |     |
| 340         | Mottels River                         | Formation | K*ml      | NY          | Vyfbeker                   | Suite         | Kheisian       | Sys       |     |
| 15          | Mount Dowo                            | Caouo     | Zmd       | AD          | Metamorphic<br>Boit Bridge | Complex       | Swatian        | -<br>Erro |     |
| 2126        | Mount Thesicor                        | Gioup     | Tmt       | NV          | *                          | *             | Tortion        | Suc       |     |
| 2150<br>720 | Mount Thesiger                        | Mambar    | 1 mt      | IN I<br>A D | Cashlanda a s              | Esmaatisa     | Vhaiaian       | Sys       |     |
| 730         | Mountain View                         | Member    | K*mt<br>L | AP          | Groblershoop               | Formation     | Kneisian       | Sys       |     |
| 595<br>25   | Movene                                | Formation | Jm        | AP          | Lebombo                    | Group         | Jurassic       | Sys       |     |
| 25          | Mozaan                                | Group     | Km<br>D   | AP          | Pongola                    | Supergroup    | Randian        | Era       |     |
| 940<br>775  | mpageni Granite                       | INOne     | ктр       | AP          | Mandana                    | E             | Randian        | Era       |     |
| 0/5         | Mpama                                 | Member    | ктра      | AP          | Mantonga                   | Formation     | Kandian        | Era       | 1.0 |
| 602         | Mpilo                                 | Formation | Jmp       | AP          | Bumbeni                    | Complex       | Jurassic       | Sys       | MS  |
| 461         | Mp1s1                                 | Formation | N*mp      | AP          | Matigulu                   | Group         | Namaquan       | Sys       |     |
| 175         | Mpongoza                              | Formation | Kmpo      | NY          | Nsuze                      | Group         | Kandian        | Era       |     |
| 1354        | Mpuluzi Granite                       | None      | Zmz       | NY          | *                          | *             | Swazian        | Era       |     |
| 1328        | Mpunga                                | Formation | Kmpu      | AP          | Mozaan                     | Group         | Kandian        | Era       |     |
| 185         | Mpushana                              | Formation | Rmps      | NY          | Klipwal                    | Subgroup      | Kandian        | Era       |     |
| T700        | Msikaba                               | Formation | Dm        | AP          | *                          | *             | Devonian       | Svs       |     |

| CODE | LITHO NAME                   | RANK      | LABEL | ST | PARENT NAME                | RANK      | CHRONO<br>NAME | RANK | PUB |
|------|------------------------------|-----------|-------|----|----------------------------|-----------|----------------|------|-----|
| 170  | Msukane                      | Formation | Rms   | AP | Nsuze                      | Group     | Randian        | Era  |     |
| 603  | Msunduze                     | Formation | Jms   | AP | Bumbeni                    | Complex   | Jurassic       | Sys  | MS  |
| 1690 | Mswati Granite               | Suite     | Rmw   | NY | *                          | *         | Randian        | Era  |     |
| 455  | Mtengu                       | Formation | N*mt  | AP | Tugela                     | Group     | Namaquan       | Sys  |     |
| 2139 | Mtombe Granite               | None      | Rmto  | NA | *                          | *         | Randian        | Era  |     |
| 1130 | Mucklebraes                  | Formation | N*mc  | NY | Mzimkulu                   | Group     | Namaquan       | Sys  |     |
| 2169 | Mud River Monzogabbro        | None      | C*mr  | NY | Cape Granite               | Suite     | Cambrian       | Sys  |     |
| 141  | Mulati                       | Formation | Zml   | AP | Gravelotte                 | Group     | Swazian        | Era  |     |
| 800  | Muldersdrif                  | Complex   | Zmu   | AP | *                          | *         | Swazian        | Era  |     |
| 878  | Munster                      | Suite     | N*mu  | AP | *                          | *         | Namaquan       | Sys  | Ca  |
| 750  | Musekwa Basalt               | Member    | K*mw  | AP | Nzhelele                   | Formation | Kheisian       | Sys  |     |
| 751  | Mutale Tuff                  | Member    | K*mu  | AP | Nzhelele                   | Formation | Kheisian       | Sys  |     |
| 628  | Muzi                         | Formation | C^mu  | AP | *                          | *         | Cenozoic       | Era  |     |
| 746  | My Darling<br>Trachyandesite | Member    | K*my  | AP | Blouberg                   | Formation | Kheisian       | Sys  |     |
| 619  | Mzamba                       | Formation | Km    | AP | *                          | *         | Cretaceous     | Sys  |     |
| 462  | Mzimkulu                     | Group     | N*mz  | AP | *                          | *         | Namaquan       | Sys  | Ca  |
| 1143 | Mzimlilo Granite             | None      | N*mi  | AP | *                          | *         | Namaquan       | Sys  | Ca  |
| 622  | Mzinene                      | Formation | Kmz   | AP | Zululand                   | Group     | Cretaceous     | Sys  |     |
| 875  | Mzumbe Granitoid             | Suite     | N*mm  | AP | *                          | *         | Namaquan       | Sys  | Ca  |
| 1233 | N'rougas Granite             | None      | N*nr  | NY | Keimoes                    | Suite     | Namaquan       | Sys  |     |
| 867  | Naab                         | Suite     | N*na  | NY | *                          | *         | Namaquan       | Sys  |     |
| 100  | Nab                          | Subgroup  | K*na  | NY | Bushmanland                | Group     | Kheisian       | Sys  |     |
| 1019 | Nababeep Gneiss              | None      | N*nb  | AP | Little Namaqualand         | Suite     | Namaquan       | Sys  |     |
| 510  | Nababis                      | Formation | Nnb   | AP | Fish River                 | Subgroup  | Namibian       | Era  |     |
| 639  | Nahoon                       | Formation | Qn    | AP | Algoa                      | Group     | Quaternary     | Sys  | LS  |
| 1699 | Nakanas                      | Formation | K*nk  | NY | Bushmanland                | Group     | Kheisian       | Sys  |     |
| 69   | Nama                         | Group     | N-C*n | AP | *                          | *         | Cambrian       | Sys  |     |
| 69   | Nama                         | Group     | N-C*n | AP | *                          | *         | Namibian       | Era  |     |
| 374  | Namies                       | Formation | K*nm  | AP | Aggeneys                   | Subgroup  | Kheisian       | Sys  |     |
| 2212 | Namies Suid Gneiss           | None      | N*nm  | NY | *                          | *         | Namaquan       | Sys  |     |
| 637  | Nanaga                       | Formation | C^n   | AP | Algoa                      | Group     | Cenozoic       | Era  | LS  |
| 1205 | Naragas                      | Formation | Vna   | NY | Koegas                     | Subgroup  | Vaalian        | Era  |     |
| 119  | Nardouw                      | Subgroup  | S-Dn  | AP | Table Mountain             | Group     | Devonian       | Sys  | Ca  |
| 119  | Nardouw                      | Subgroup  | S-Dn  | AP | Table Mountain             | Group     | Silurian       | Sys  | Ca  |
| 2221 | Naroep Gneiss                | None      | N*np  | NY | *                          | *         | Namaquan       | Sys  |     |
| 1080 | Naros Granite                | None      | N*ns  | AP | *                          | *         | Namaquan       | Sys  |     |
| 2121 | Narries                      | Subsuite  | K*nr  | NY | Koelmanskop<br>Metamorphic | Suite     | Kheisian       | Sys  |     |
| 2009 | Nasep Quartzite              | Member    | Nna   | AP | Urusis                     | Formation | Namibian       | Era  |     |
| 1994 | Nassau Biotite Granite       | None      | N/C*n | AP | Cape Granite               | Suite     | Cambrian       | Sys  | Ca  |
| 1994 | Nassau Biotite Granite       | None      | N/C*n | AP | Cape Granite               | Suite     | Namibian       | Era  | Ca  |
| 74   | Natal                        | Group     | On    | AP | *                          | *         | Ordovician     | Sys  | IP  |
| 1714 | Nauga                        | Formation | Vnu   | NY | Campbell Rand              | Subgroup  | Vaalian        | Era  |     |
| 1701 | Ndonyane                     | Formation | N*nd  | AP | Mapumulo                   | Group     | Namaquan       | Sys  | Ca  |
| 986  | Nebo Granite                 | None      | Vn    | AP | Lebowa Granite             | Suite     | Vaalian        | Era  |     |
| 293  | Nederhorst                   | Formation | Vne   | AP | Pretoria                   | Group     | Vaalian        | Era  |     |
| 1030 | Neilers Drift Granite        | None      | N*ne  | NY | Keimoes                    | Suite     | Namaquan       | Sys  |     |
| 1713 | Nelani                       | Formation | Vnl   | NY | Koegas                     | Subgroup  | Vaalian        | Era  |     |
| 764  | Nels River                   | Member    | Nne   | AP | Groenefontein              | Formation | Namibian       | Era  | Ca  |
| 915  | Nelshoogte Gneiss            | None      | Znh   | AP | *                          | *         | Swazian        | Era  |     |
| 835  | Nelspruit                    | Suite     | Zne   | AP | *                          | *         | Swazian        | Era  | Ca  |
| 1754 | Newspaper                    | Member    | One   | AP | Mariannhill                | Formation | Ordovician     | Sys  | LS  |
| 809  | Ngoye                        | Complex   | N*ny  | AP | *                          | *         | Namaquan       | Sys  | Ca  |
| 437  | Ngubevu                      | Formation | N*ng  | AP | Mtongosi                   | Group     | Namaquan       | Sys  |     |
| 2144 | Ngwane Gneiss                | None      | Znw   | NA | *                          | *         | Swazian        | Era  |     |
| 159  | Ngweni                       | Formation | Zng   | NY | Empangeni<br>Metamorphic   | Suite     | Swazian        | Era  |     |
| 735  | Ngwepe Tuff                  | Member    | K*ng  | AP | Setlaole                   | Formation | Kheisian       | Sys  |     |
| 2140 | Nhlangano Gneiss             | None      | Rnl   | NA | *                          | *         | Randian        | Era  |     |
| 161  | Nhlebela                     | Formation | Rnh   | AP | Bivane                     | Subgroup  | Randian        | Era  |     |
| 2010 | Niederhagen Quartzite        | Member    | Nni   | AP | Nudaus                     | Formation | Namibian       | Era  |     |
| 1004 | Nieuwe Post Wes Gneiss       | None      | K*ni  | NY | Brakwater<br>Metamorphic   | Suite     | Kheisian       | Sys  |     |

| CODE | LITHO NAME                  | RANK       | LABEL  | ST | PARENT NAME              | RANK       | CHRONO<br>NAME | RANK | PUB |
|------|-----------------------------|------------|--------|----|--------------------------|------------|----------------|------|-----|
| 2013 | Nigramoep                   | Member     | Nng    | NY | Dabis                    | Formation  | Namibian       | Era  |     |
| 157  | Nkandla                     | Formation  | Znk    | NY | *                        | *          | Swazian        | Era  |     |
| 181  | Nkoneni                     | Subgroup   | Rnk    | AP | Mozaan                   | Group      | Randian        | Era  |     |
| 440  | Nkunzana                    | Formation  | N*nk   | AP | Mfongosi                 | Group      | Namaquan       | Sys  |     |
| 1017 | Noenoemaasberg Gneiss       | None       | K*nn   | AP | Gladkop                  | Suite      | Kheisian       | Sys  |     |
| 23   | Nondweni                    | Group      | Zn     | AP | *                        | *          | Swazian        | Era  | Ca  |
| 822  | Nooitgedacht<br>Carbonatite | Complex    | N*no   | AP | *                        | *          | Namaquan       | Sys  |     |
| 762  | Nooitgedagt                 | Member     | Nno    | AP | Matjies River            | Formation  | Namibian       | Era  | LS  |
| 2128 | Noriseep                    | Formation  | K*ns   | NY | Droëboom                 | Group      | Kheisian       | Sys  |     |
| 579  | Normandien                  | Formation  | Pn     | NY | Adelaide                 | Subgroup   | Permian        | Sys  |     |
| 1702 | Norree                      | Formation  | Nnr    | NY | Malmesbury               | Group      | Namibian       | Era  |     |
| 2218 | Noubestaan Gneiss           | None       | N*nn   | NY | *                        | *          | Namaquan       | Sys  |     |
| 1772 | Noudap Gneiss               | None       | K*nd   | NY | *                        | *          | Kheisian       | Sys  |     |
| 403  | Nous                        | Formation  | K*no   | AP | Haib                     | Subgroup   | Kheisian       | Sys  |     |
| 1082 | Nous West Tonalite          | None       | N*nw   | NY | *                        | *          | Namaquan       | Sys  |     |
| 1692 | Nouzees                     | Suite      | N*nz   | NY | *                        | *          | Namaquan       | Sys  |     |
| 837  | Novengilla Gabbro           | Suite      | Rno    | AP | Rooiwater                | Complex    | Randian        | Era  |     |
| 2102 | Nqwadolo Granite            | None       | N*nq   | NY | Oribi Gorge<br>Granitoid | Suite      | Namaquan       | Sys  | MS  |
| 923  | Nseleni Gneiss              | None       | Zns    | NY | *                        | *          | Swazian        | Era  |     |
| 24   | Nsuze                       | Group      | Rn     | AP | Pongola                  | Supergroup | Randian        | Era  |     |
| 893  | Ntabankosi Rhvolite         | Suite      | Int    | AP | *                        | *          | Iurassic       | Svs  |     |
| 1691 | Ntabayezulu Lavered         | Suite      | Inv    | AP | *                        | *          | Iurassic       | Sys  | Са  |
| 589  | Ntabene                     | Formation  | TRn    | AP | Karoo                    | Supergroup | Triassic       | Sys  | MS  |
| 1783 | Ntanyana                    | Formation  | Rnv    | NY | Nkoneni                  | Subgroup   | Randian        | Era  |     |
| 59   | Ntingwe                     | Group      | N*n    | AP | *                        | *          | Namaquan       | Svs  |     |
| 1732 | Ntombe                      | Formation  | Rnt    | AP | Dwaalhoek                | Subgroup   | Randian        | Era  |     |
| 2006 | Nudaus                      | Formation  | Nnd    | AP | Schwarzrand              | Subgroup   | Namibian       | Era  |     |
| 477  | Numees                      | Formation  | Nnu    | AP | Port Nolloth             | Group      | Namibian       | Era  | IP  |
| 1773 | Nuwefontein Granite         | None       | N*nf   | NY | Spektakel                | Suite      | Namaquan       | Svs  |     |
| 1070 | Nuwerus Gneiss              | None       | N*nu   | NY | Little Namagualand       | Suite      | Namaquan       | Sys  |     |
| 605  | Nxwala                      | Member     | Jnx    | AP | Fenda                    | Formation  | Jurassic       | Sys  |     |
| 109  | Nylstroom                   | Subgroup   | K*n    | AP | Waterberg                | Group      | Kheisian       | Sys  |     |
| 590  | Nyoka                       | Formation  | TRny   | AP | Karoo                    | Supergroup | Triassic       | Sys  | MS  |
| 431  | Nzhelele                    | Formation  | K*nz   | AP | Soutpansberg             | Group      | Kheisian       | Sys  |     |
| 1995 | Nzimane Granite             | None       | Rnz    | AP | *                        | *          | Randian        | Era  | Ca  |
| 274  | Oaktree                     | Formation  | Voa    | AP | Malmani                  | Subgroup   | Vaalian        | Era  |     |
| 683  | Observatory Shale           | Member     | Rob    | AP | Parktown                 | Formation  | Randian        | Era  |     |
| 1741 | Oceola                      | Member     | Voc    | AP | Vryburg                  | Formation  | Vaalian        | Era  | LS  |
| 1684 | Odwaleni                    | Subgroup   | Ro     | AP | Mozaan                   | Group      | Randian        | Era  |     |
| 6    | Olifantshoek                | Supergroup | K*o    | AP | *                        | *          | Kheisian       | Sys  |     |
| 582  | Oliviershoek                | Member     | TRo    | NY | Burgersdorp              | Formation  | Triassic       | Sys  |     |
| 352  | Omdraai                     | Formation  | K*om   | NY | Biesje Poort             | Group      | Kheisian       | Sys  |     |
| 314  | Ongeluk                     | Formation  | Vo     | AP | Postmasburg              | Group      | Vaalian        | Era  |     |
| 2127 | Onseepkans                  | Formation  | K*on   | NY | Droëboom                 | Group      | Kheisian       | Sys  |     |
| 16   | Onverwacht                  | Group      | Zo     | AP | Barberton                | Supergroup | Swazian        | Era  |     |
| 2023 | Oograbies West Gneiss       | None       | K*oo   | NY | Vioolsdrif               | Suite      | Kheisian       | Sys  |     |
| 2049 | Oorkraal Amphibolite        | None       | N*oo   | NY | *                        | *          | Namaquan       | Sys  |     |
| 1100 | Opdam Granite               | None       | N*op   | AP | T'Oubep                  | Suite      | Namaquan       | Sys  | Ca  |
| 196  | Orange Grove                | Formation  | Ror    | AP | Hospital Hill            | Subgroup   | Randian        | Era  |     |
| 56   | Orange River                | Group      | K*or   | AP | *                        | *          | Kheisian       | Sys  |     |
| 885  | Oranjemund                  | Formation  | No     | AP | Gariep                   | Supergroup | Namibian       | Era  | IP  |
| 874  | Oribi Gorge Granitoid       | Suite      | N*o    | AP | *                        | *          | Namaquan       | Sys  | Ca  |
| 237  | Orkney                      | Formation  | Rok    | AP | Klipriviersberg          | Group      | Randian        | Era  | _   |
| 537  | Osberg                      | Formation  | Do     | AP | Bidouw                   | Subgroup   | Devonian       | Sys  |     |
| 389  | Ou-Eendop                   | Formation  | K*ou   | NY | Khurisberg               | Subgroup   | Kheisian       | Sys  | _   |
| 1199 | Oudeberg                    | Member     | Po     | AP | Balfour                  | Formation  | Permian        | Sys  | _   |
| 1196 | Oukloot                     | Member     | Pok    | NY | 1 eekloot                | Formation  | Permian        | Sys  | _   |
| 2124 | Oupvlakte                   | Formation  | K*op   | NY | *                        | *          | Kheisian       | Sys  | _   |
| 1682 | Ozwana                      | Subgroup   | Roz    | AP | Nsuze                    | Group      | Kandian        | Era  |     |
| 1996 | Paardeberg Granite          | None       | N/C*p  | AP | Cape Granite             | Suite      | Cambrian       | Sys  | Ca  |
| 1996 | Paardeberg Granite          | None       | N/C*p  | AP | Cape Granite             | Suite      | Namibian       | Era  | Ca  |
| 2087 | Paarl Pluton                | Pluton     | IN-C*p | IF | Cape Granite             | Suite      | Cambrian       | Sys  | Ca  |

| CODE        | LITHO NAME              | RANK       | LABEL         | ST         | PARENT NAME              | RANK       | CHRONO<br>NAME | RANK       | PUB |
|-------------|-------------------------|------------|---------------|------------|--------------------------|------------|----------------|------------|-----|
| 2087        | Paarl Pluton            | Pluton     | N-C*p         | IF         | Cape Granite             | Suite      | Namibian       | Era        | Ca  |
| 521         | Pakhuis                 | Formation  | Ора           | AP         | Table Mountain           | Group      | Ordovician     | Sys        |     |
| 1150        | Palala Granite          | None       | Vpl           | AP         | *                        | *          | Vaalian        | Era        |     |
| 716         | Paling                  | Member     | Vpg           | AP         | Gamagara                 | Formation  | Vaalian        | Era        |     |
| 1203        | Palingkloof             | Member     | Ppa           | AP         | Balfour                  | Formation  | Permian        | Sys        |     |
| 1217        | Palmietfontein          | Formation  | Rpf           | NY         | Government               | Subgroup   | Randian        | Era        |     |
| 946         | Palmietfontein Granite  | None       | Rpm           | NY         | *                        | *          | Randian        | Era        |     |
| 795         | Pannetjie               | Formation  | Vpn           | AP         | Koegas                   | Subgroup   | Vaalian        | Era        |     |
| 1710        | Papkuil                 | Formation  | Vpa           | NY         | Campbell Rand            | Subgroup   | Vaalian        | Era        |     |
| 396         | Paradys River           | Formation  | K*pa          | AP         | Orange River             | Group      | Kheisian       | Sys        |     |
| 197         | Parktown                | Formation  | Rpa           | AP         | Hospital Hill            | Subgroup   | Randian        | Era        |     |
| 2099        | Parys Granite/Gneiss    | None       | Zpa           | NY         | *                        | *          | Swazian        | Era        |     |
| 99          | Pella                   | Subgroup   | K*pe          | AP         | Bushmanland              | Group      | Kheisian       | Sys        |     |
| 279         | Penge                   | Formation  | Vpe           | AP         | Chuniespoort             | Group      | Vaalian        | Era        |     |
| 520         | Peninsula               | Formation  | Op            | AP         | Table Mountain           | Group      | Ordovician     | Svs        |     |
| 1035        | Perdeberg Monzonite     | None       | N*pe          | NY         | *                        | *          | Namaquan       | Svs        |     |
| 771         | Perdepoort              | Member     | Dp            | AP         | Witpoort                 | Formation  | Devonian       | Svs        |     |
| 189         | Perdeput                | Formation  | Rpe           | AP         | Prieskaspoort            | Subgroup   | Randian        | Ēra        |     |
| 823         | Phalaborwa              | Complex    | K*p           | AP         | *                        | *          | Kheisian       | Svs        |     |
| 1728        | Pickelhaube             | Formation  | Npc           | NY         | Hilda                    | Subgroup   | Namibian       | Ēra        | IP  |
| 518         | Piekenierskloof         | Formation  | Opi           | AP         | Table Mountain           | Group      | Ordovician     | Svs        | LS  |
| 824         | Pienaars River          | Complex    | N*pi          | AP         | *                        | *          | Namaguan       | Svs        |     |
| 842         | Piet Retief Gabbro      | Suite      | Rpi           | AP         | Usushwana                | Complex    | Randian        | Era        |     |
| 1010        | Piet Rooi's Puts Gneiss | None       | r<br>K*pp     | NY         | Vyfbeker<br>Motamorphie  | Suite      | Kheisian       | Sys        |     |
| 251         | Dist Basishara          | Formation  | 1/*-L         | NIV        | Disais Depart            | Casar      | Vh sisian      | C          | _   |
| 551         | Distance situlation     | Formation  | K"pb<br>D-    |            | Ease Poort               | Group      | Demoision      | Sys        | _   |
| 370         | Distant                 | Command    | Pp<br>7       | AP         | Ecca                     | Group      | Perman         | Sys        |     |
| Z1<br>400   | Piletersburg            | Group      | Zp<br>N       | AP         | D 1 1                    | C 1        | Swazian        | Era        |     |
| 480         | Piketberg               | Formation  | Npi           | AP         | Boland                   | Subgroup   | Namibian       | Era        | MC  |
| 825         | Pilanesberg             | Complex    | N^p<br>IZ* ·  | AP         | *                        | *          | Namaquan       | Sys        | MS  |
| 2126        | Pipeline Gneiss         | None       | K^pi<br>N_1   | IN Y       | *                        | *          | Kheisian       | Sys        |     |
| 2012        | Plaatjiestontein        | Member     | Npl           | NY         | Dabis                    | Formation  | Namibian       | Era        |     |
| 1221        | Plat Sjambok            | Suite      | N*pl          | AP         | *                        | *          | Namaquan       | Sys        | Ca  |
| 31          | Platberg                | Group      | Rpl           | AP         | Ventersdorp              | Supergroup | Randian        | Era        | 10  |
| 1/42        | Pluto's Vale            | Member     | Ppl           | AP         | Ripon                    | Formation  | Permian        | Sys        |     |
| 334         | Poliesberg              | Formation  | K*po          | AP         | *                        | *          | Kheisian       | Sys        | LS  |
| 2118        | Polisiehoek Granite     | None       | N*po          | NY         | *                        | *          | Namaquan       | Sys        |     |
| 942         | Pompey Granite          | None       | Rpo           | AP         | Vorster                  | Suite      | Randian        | Era        |     |
| 3           | Pongola                 | Supergroup | Кр            | AP         | *                        | *          | Randian        | Era        |     |
| 1204        | Poortjie                | Member     | Рро           | AP         | Teekloof                 | Formation  | Permian        | Sys        |     |
| 516         | Populierbos             | Formation  | C*p           | NY         | Klipheuwel               | Group      | Cambrian       | Sys        |     |
| 487         | Porseleinberg           | Formation  | Nps           | AP         | Swartland                | Subgroup   | Namibian       | Era        |     |
| 627         | Port Durnford           | Formation  | Qp            | AP         | *                        | *          | Pleistocene    | Ser        |     |
| 1/25        | Port Nolloth            | Group      | Np            | NY         | Gariep                   | Supergroup | Namibian       | Era        | IP  |
| 481         | Porterville             | Formation  | Npt           | AP         | Boland                   | Subgroup   | Namibian       | Era        |     |
| 1177        | Post-Transvaal Diabases | None       |               | IF         | *                        | *          | Mokolian       | Era        |     |
| 1178        | Post-Waterberg Diabases | None       |               | IF         | *                        | *          | Mokolian       | Era        |     |
| 1679        | Postmasburg             | Group      | Vpo           | NY         | Transvaal                | Supergroup | Vaalian        | Era        |     |
| 40          | Pretoria                | Group      | Vp            | AP         | Transvaal                | Supergroup | Vaalian        | Era        | Ca  |
| 88          | Prieskaspoort           | Subgroup   | Rpk           | AP         | Marydale                 | Group      | Randian        | Era        |     |
| 558         | Prince Albert           | Formation  | Ppr           | AP         | Ecca                     | Group      | Permian        | Sys        | MS  |
| 201         | Promise                 | Formation  | Rpr           | AP         | Government               | Subgroup   | Randian        | Era        |     |
| 2197        | Prospect Hill           | Formation  | Тр            | NY         | Sandveld                 | Group      | Miocene        | Ser        |     |
| 363         | Prynnsberg              | Formation  | K*pr          | NY         | Brulpan                  | Group      | Kheisian       | Sys        |     |
| 355         | Puntsit                 | Formation  | K*pu          | NY         | Biesje Poort<br>Vyfbeker | Group      | Kheisian       | Sys        |     |
| 1230        | Public Granita          | None       | N*ov          | IN I<br>NV | Metamorphic<br>Keimoes   | Suite      | Namaguan       | Sys        |     |
| 072         | Pyramid Gabbro Norito   | None       | Vov           | AD         | Rustenburg Lavored       | Suite      | Vaalian        | Ero        |     |
| 2105        | Ouaggals Van            | Formation  | C^a           | NV         | *                        | *          | Concreit       | Era        | _   |
| 2105<br>172 | Quagga s Kop            | Formation  | C Y<br>Ra     |            | Neuzo                    | Group      | Randian        | Era        | _   |
| 1122        | Quuenn                  | Formation  | N¥~           |            | Manumula                 | Group      | Namagura       | S          | Ca  |
| 1320        | Quila                   | Formation  | IN' Y         |            | Mozar                    | Group      | Randian        | Sys<br>Ero | Ca  |
| 1329        | Qwasha<br>Pamanadrif    | Submit     | NYW<br>V*···· | AP<br>NV   | Wioolod                  | Shoup      | Kandian        | C          | _   |
| 200         | Nathansum               | Subsuite   | ivuu          | IN I       | v iooisurii              | Suite      | ix neisian     | Sys        | 1   |

| CODE | LITHO NAME                        | RANK      | LABEL | ST | PARENT NAME         | RANK       | CHRONO<br>NAME | RANK | PUB |
|------|-----------------------------------|-----------|-------|----|---------------------|------------|----------------|------|-----|
| 215  | Randfontein                       | Formation | Rra   | AP | Johannesburg        | Subgroup   | Randian        | Era  |     |
| 849  | Rashoop Granophyre                | Suite     | Vra   | AP | Bushveld            | Complex    | Vaalian        | Era  |     |
| 367  | Ratel Draai                       | Formation | N*ra  | NY | Areachap            | Group      | Namaquan       | Sys  |     |
| 356  | Rautenbach Se Kop                 | Formation | K*ra  | AP | Biesje Poort        | Group      | Kheisian       | Sys  |     |
| 290  | Rayton                            | Formation | Vry   | AP | Pretoria            | Group      | Vaalian        | Era  |     |
| 778  | Red Rocks                         | Member    | Jr    | AP | Clarens             | Formation  | Jurassic       | Sys  |     |
| 180  | Redcliff                          | Formation | Rre   | AP | Mozaan<br>Brakwater | Group      | Randian        | Era  |     |
| 1005 | Regt Kyk Gneiss                   | None      | K*re  | NY | Metamorphic         | Suite      | Kheisian       | Sys  |     |
| 1790 | Reivilo                           | Formation | Vrv   | NY | Campbell Rand       | Subgroup   | Vaalian        | Era  |     |
| 1015 | Renosterkop Gneiss                | None      | N*re  | NY | *                   | *          | Namaquan       | Sys  |     |
| 194  | Rhenosterhoek                     | Formation | Rrh   | AP | Dominion            | Group      | Randian        | Era  |     |
| 739  | Rhenosterpoort Quartz<br>Porphyry | Member    | K*rh  | AP | Swaershoek          | Formation  | Kheisian       | Sys  |     |
| 193  | Rhenosterspruit                   | Formation | Rrs   | AP | Dominion            | Group      | Randian        | Era  |     |
| 888  | Richtersveld                      | Suite     | Nr    | AP | *                   | *          | Namibian       | Era  |     |
| 1085 | Riemvasmaak Gneiss                | None      | N*rv  | NY | *                   | *          | Namaquan       | Sys  |     |
| 322  | Riet Put                          | Formation | K*ri  | NY | *                   | *          | Kheisian       | Sys  |     |
| 1043 | Rietberg Granite                  | None      | N*ri  | AP | Spektakel           | Suite      | Namaquan       | Sys  |     |
| 826  | Rietfontein                       | Complex   | Vrt   | AP | *                   | *          | Vaalian        | Era  |     |
| 686  | Rietfontein Tillite               | Bed       | Rrf   | NY | Coronation          | Formation  | Randian        | Era  |     |
| 244  | Rietgat                           | Formation | Rrg   | AP | Platberg            | Group      | Randian        | Era  |     |
| 789  | Rietheuvel                        | Member    | Qri   | AP | Amanzi              | Formation  | Quaternary     | Sys  |     |
| 766  | Rietkloof                         | Member    | C*r   | AP | Vaartwell           | Formation  | Cambrian       | Sys  | Ca  |
| 209  | Rietkuil                          | Formation | Rrk   | NY | Jeppestown          | Subgroup   | Randian        | Ēra  |     |
| 2030 | Rietpoort Granite                 | None      | Kr    | NY | Koegel Fontein      | Complex    | Cretaceous     | Sys  |     |
| 527  | Rietvlei                          | Formation | Dr    | AP | Nardouw             | Subgroup   | Devonian       | Sys  | LS  |
| 1318 | Riffontein                        | Formation | Vrf   | AP | Makeckaan           | Subgroup   | Vaalian        | Era  | Ca  |
| 1320 | Rinkhalskop                       | Formation | Vri   | AP | Rooiberg            | Group      | Vaalian        | Era  | Ca  |
| 561  | Ripon                             | Formation | Pr    | AP | Ecca                | Group      | Permian        | Sys  | LS  |
| 662  | Riverton                          | Formation | Qr    | AP | *                   | *          | Quaternary     | Sys  |     |
| 614  | Robberg                           | Formation | J-Kr  | AP | *                   | *          | Cretaceous     | Sys  | MS  |
| 614  | Robberg                           | Formation | J-Kr  | AP | *                   | *          | Jurassic       | Sys  | MS  |
| 1189 | Robertson Melilitite              | None      | Tr    | AP | *                   | *          | Tertiary       | Sys  |     |
| 2093 | Robertson Pluton                  | Pluton    | N-C*r | IF | Cape Granite        | Suite      | Cambrian       | Sys  |     |
| 2093 | Robertson Pluton                  | Pluton    | N-C*r | IF | Cape Granite        | Suite      | Namibian       | Era  |     |
| 1064 | Rok Optel Granite                 | None      | N*rk  | NY | Keimoes             | Suite      | Namaquan       | Sys  |     |
| 1160 | Rondavel Syenite                  | None      | N*rn  | AP | Pienaars River      | Complex    | Namaquan       | Sys  |     |
| 827  | Roodekraal                        | Complex   | Vre   | AP | *                   | *          | Vaalian        | Era  |     |
| 801  | Roodekrans                        | Complex   | Zr    | AP | *                   | *          | Swazian        | Era  |     |
| 881  | Roodeplaat                        | Suite     | N*r   | AP | Pienaars River      | Complex    | Namaquan       | Sys  |     |
| 208  | Roodepoort                        | Formation | Rro   | AP | Jeppestown          | Subgroup   | Randian        | Era  |     |
| 177  | Roodewal                          | Formation | Rrw   | NY | Nsuze               | Group      | Randian        | Era  |     |
| 41   | Rooiberg                          | Group     | Vro   | AP | Transvaal           | Supergroup | Vaalian        | Era  |     |
| 1309 | Rooibok Conglomerate              | Member    | Vrb   | NY | Kwarriehoek         | Formation  | Vaalian        | Era  | Ca  |
| 729  | Rooidam                           | Member    | K*ro  | NY | Toeslaan            | Formation  | Kheisian       | Sys  |     |
| 281  | Rooihoogte                        | Formation | Vrh   | AP | Pretoria            | Group      | Vaalian        | Era  |     |
| 1180 | Rooiklip Granite                  | None      | C*ro  | NY | Cape Granite        | Suite      | Cambrian       | Sys  |     |
| 948  | Rooikop Granophyre<br>Porphyry    | None      | Vrk   | AP | Rashoop Granophyre  | Suite      | Vaalian        | Era  |     |
| 775  | Rooinek                           | Member    | Pro   | NY | Normandien          | Formation  | Permian        | Sys  |     |
| 1235 | Roomekke Iron-<br>Formation       | Member    | Vrn   | NY | Heynskop            | Formation  | Vaalian        | Era  |     |
| 1223 | Rooipoort Gabbronorite            | None      | Vrp   | NY | Rustenburg Layered  | Suite      | Vaalian        | Era  |     |
| 1048 | Rooiputs Granophyre               | None      | N*ro  | AP | *                   | *          | Namaquan       | Sys  | Ca  |
| 770  | Rooirand                          | Member    | Dro   | AP | Witpoort            | Formation  | Devonian       | Sys  |     |
| 802  | Rooiwater                         | Complex   | Rr    | AP | *                   | *          | Randian        | Era  |     |
| 899  | Roossenekal                       | Subsuite  | Vrs   | NY | Rustenburg Layered  | Suite      | Vaalian        | Era  |     |
| 1449 | Rosedale                          | Member    | Rrd   | NY | Elsburg             | Formation  | Randian        | Era  |     |
| 1743 | Rosendal                          | Member    | Vrd   | AP | Vryburg             | Formation  | Vaalian        | Era  | LS  |
| 953  | Rostock Bronzitite                | None      | Vrz   | AP | Croydon             | Subsuite   | Vaalian        | Era  |     |
| 397  | Rosyntjieberg                     | Formation | K*r   | AP | Orange River        | Group      | Kheisian       | Sys  |     |
| 470  | Rouxville                         | Formation | N*rx  | AP | Koras               | Group      | Namaquan       | Sys  | Ca  |
| 349  | Rozynen Bosch                     | Formation | K*rz  | NY | Vyfbeker            | Suite      | Kheisian       | Sys  |     |

| CODE | LITHO NAME                     | RANK       | LABEL                   | ST  | PARENT NAME              | RANK       | CHRONO<br>NAME | RANK        | PUB  |
|------|--------------------------------|------------|-------------------------|-----|--------------------------|------------|----------------|-------------|------|
|      |                                |            |                         |     | Metamorphic              |            |                |             |      |
| 146  | Rubbervale                     | Formation  | Zru                     | AP  | Gravelotte               | Group      | Swazian        | Era         |      |
| 970  | Ruighoek Pyroxenite            | None       | Vru                     | AP  | Schilpadnest             | Subsuite   | Vaalian        | Era         |      |
| 2053 | Ruiter Se Berg                 | Formation  | Mru                     | NY  | Kamiesberg               | Subgroup   | Mokolian       | Era         |      |
| 468  | Rusplaas                       | Formation  | N*ru                    | AP  | Koras                    | Group      | Namaquan       | Sys         | Ca   |
| 306  | Rust De Winter                 | Formation  | Vrw                     | AP  | Transvaal                | Supergroup | Vaalian        | Ēra         |      |
| 850  | Rustenburg Lavered             | Suite      | Vr                      | AP  | Bushveld                 | Complex    | Vaalian        | Era         |      |
| 1175 | Rykoppies Gabbro               | None       | Rrv                     | NY  | *                        | *          | Randian        | Era         |      |
| 400  | Sacveld                        | Formation  | Nee                     | AD  | Kaaimans                 | Group      | Namibian       | Era         |      |
| 1176 | Sabio Sanda Granophuro         | None       | 1 N 35                  | NV  | *                        | *          | Namaguan       | Suc         |      |
| 266  | Sable Sands Granophyre         | Formation  | Dec                     |     | Wallshara                | Crown      | Pandian        | Gys<br>Erro | MS   |
| 200  | Sadowa                         | Formation  | NS2                     | AP  | Wolkberg                 | Group      | Kandian        | Era         | M3   |
| 2022 | Samek Gneiss                   | None       | IN <sup>™</sup> SI<br>m | INY | Little Namaqualand       | Suite      | Namaquan       | Sys         |      |
| 633  | Saldanha                       | Formation  | 1s                      | AP  | *                        | *          | Miocene        | Ser         | 1.50 |
| 2090 | Saldanha Batholith             | Batholith  | N-C*sa                  | IF  | Cape Granite             | Suite      | Cambrian       | Sys         | MS   |
| 2090 | Saldanha Batholith             | Batholith  | N-C*sa                  | IF  | Cape Granite             | Suite      | Namibian       | Era         | MS   |
| 2179 | Saldanha Quartz<br>Porphyry    | None       | N/C*sl                  | NY  | Cape Granite             | Suite      | Cambrian       | Sys         |      |
| 2179 | Saldanha Quartz<br>Porphyry    | None       | N/C*sl                  | NY  | Cape Granite             | Suite      | Namibian       | Era         |      |
| 1319 | Salie Sloot                    | Formation  | Vsa                     | AP  | Makeckaan                | Subgroup   | Vaalian        | Era         | Са   |
| 910  | Salisbury Kop Granite          | None       | Zsk                     | AP  | *                        | *          | Swazian        | Era         | 0    |
| 638  | Salnova                        | Formation  | Os                      | AP  | Algoa                    | Group      | Pleistocene    | Ser         | IS   |
| 2217 | Samora Cranita                 | None       | <u>V</u> ****           | NV  | *                        | *          | Namaguan       | Suc         | 1.5  |
| 425  | Samoep Granite                 | Estruction | IN'SC<br>Nikaa          | AD  | Mfagaaa                  | Caracar    | Namaquan       | 5ys         |      |
| 433  | Samungu                        | Formation  | IN <sup>+</sup> Sa      | AP  | Miongosi                 | Group      | Namaquan       | Sys         |      |
| 908  | Sand River Gneiss              | None       | Zsr                     | AP  | *                        | *          | Swazian        | Era         | 0    |
| 1774 | Sandbaken Metabasite           | None       | N*sd                    | AP  | *                        | *          | Namaquan       | Sys         | Ca   |
| 332  | Sandkoppies                    | Formation  | K*sa                    | NY  | Brakwater<br>Metamorphic | Suite      | Kheisian       | Sys         |      |
| 500  | Sandkraal                      | Formation  | Nsn                     | AP  | Kaaimans                 | Group      | Namibian       | Era         |      |
| 347  | Sandnoute                      | Formation  | K*sn                    | NY  | *                        | *          | Kheisian       | Sys         |      |
| 541  | Sandpoort                      | Formation  | Ds                      | AP  | Traka                    | Subgroup   | Devonian       | Sys         |      |
| 353  | Sandputs                       | Formation  | K*sd                    | NY  | Biesje Poort             | Group      | Kheisian       | Sys         | MS   |
| 414  | Sandriviersberg                | Formation  | K*sb                    | AP  | Kransberg                | Subgroup   | Kheisian       | Svs         |      |
| 128  | Sandspruit                     | Formation  | Zs                      | AP  | Tiakastad                | Subgroup   | Swazian        | Era         |      |
| 1677 | Sandveld                       | Group      | C^s                     | NY  | *                        | *          | Cenozoic       | Era         | MS   |
| 525  | Sardinia Bay                   | Eormation  | Och                     | NV  | Table Mountain           | Group      | Ordovician     | Sve         | MS   |
| 1314 | Saronia Grit                   | Mombor     | Ver                     | NV  | Kwarriohook              | Eormation  | Valian         | Ero         | Co   |
| 262  | Sakolam                        | Earmation  | V 5A                    | AD  | Woll-borg                | Croup      | Pandian        | Ero         | MS   |
| 203  |                                | Formation  | KSC O                   |     | workberg                 | Gioup      | Kandian        | C           | 1415 |
| 640  | Schelm Hoek                    | Formation  | Qsc                     | AP  | Algoa                    | Group      | Holocene       | Ser         | LS   |
| 805  | Schiel Alkaline                | Complex    | Vsc                     | AP  | *                        | *          | Vaalian        | Era         | MS   |
| 901  | Schilpadnest                   | Subsuite   | Vss                     | NY  | Rustenburg Layered       | Suite      | Vaalian        | Era         |      |
| 308  | Schmidtsdrif                   | Subgroup   | Vs                      | AP  | Ghaap                    | Group      | Vaalian        | Era         | MS   |
| 497  | Schoemanspoort                 | Formation  | C*s                     | AP  | *                        | *          | Cambrian       | Sys         | Ca   |
| 776  | Schoondraai                    | Member     | Psc                     | NY  | Normandien               | Formation  | Permian        | Sys         |      |
| 136  | Schoongezicht                  | Formation  | Zsc                     | NY  | Fig Tree                 | Group      | Swazian        | Era         | MS   |
| 496  | Schoongezigt                   | Formation  | C*sc                    | AP  | Kansa                    | Group      | Cambrian       | Sys         | Ca   |
| 303  | Schrikkloof                    | Formation  | Vsf                     | AP  | Rooiberg                 | Group      | Vaalian        | Era         |      |
| 1079 | Schuitdrift Gneiss             | None       | N*sc                    | NY  | *                        | *          | Namaquan       | Sys         |      |
| 1171 | Schurwedraai Alkali<br>Granite | None       | Vsu                     | AP  | *                        | *          | Vaalian        | Era         | MS   |
| 117  | Schwarzrand                    | Subgroup   | N-C*s                   | AP  | Nama                     | Group      | Cambrian       | Svs         |      |
| 117  | Schwarzrand                    | Subgroup   | N-C*s                   | AP  | Nama                     | Group      | Namihian       | Era         |      |
| 261  | Selfwarzrand                   | Eormation  | Reo.                    |     | Wollzborg                | Group      | Randian        | Ero         | MS   |
| 201  | Sekololo<br>Salati             | Formation  | D al                    |     | Wallshara                | Group      | Dandian        | Бла         | MC   |
| 204  | Selati                         | Formation  | KSI<br>NT#              | AP  | Wolkberg                 | Group      | Kandian        | Era         | M3   |
| 400  | Sequembi                       | Formation  | IN <sup>+</sup> SQ      | AP  | mauguiu                  | Group      | Namaquan       | Sys         |      |
| 2199 | Serala                         | Formation  | Kser                    | AP  | *                        | *          | Kandian        | Era         |      |
| 955  | Serokolo Bronzitite            | None       | Vse                     | AP  | Croydon                  | Subsuite   | Vaalian        | Era         |      |
| 736  | Sesalong Conglomerate          | Member     | K*ss                    | AP  | Mogalakwena              | Formation  | Kheisian       | Sys         |      |
| 418  | Setlaole                       | Formation  | K*se                    | AP  | Matlabas                 | Subgroup   | Kheisian       | Sys         |      |
| 879  | Sezela                         | Suite      | N*sz                    | AP  | *                        | *          | Namaquan       | Sys         | Ca   |
| 997  | Shamiriri Granite              | None       | Rsr                     | AP  | *                        | *          | Randian        | Era         |      |
| 134  | Sheba                          | Formation  | Zsh                     | AP  | Fig Tree                 | Group      | Swazian        | Era         | MS   |
| 951  | Shelter Norite                 | None       | Vsh                     | AP  | Rustenburg Lavered       | Suite      | Vaalian        | Era         |      |
| 998  | Shirindi Granite               | None       | Rsh                     | AP  | *                        | *          | Randian        | Era         |      |

| CODE       | LITHO NAME                          | RANK      | LABEL                        | ST          | PARENT NAME                            | RANK        | CHRONO<br>NAME          | RANK       | PUB  |
|------------|-------------------------------------|-----------|------------------------------|-------------|----------------------------------------|-------------|-------------------------|------------|------|
| 428        | Sibasa                              | Formation | K*si                         | AP          | Soutpansberg                           | Group       | Kheisian                | Sys        |      |
| 442        | Sibudeni                            | Formation | N*sb                         | AP          | Mfongosi                               | Group       | Namaquan                | Sys        |      |
| 844        | Sicunusa Granite                    | Suite     | Rsu                          | NY          | *                                      | *           | Randian                 | Era        |      |
| 1142       | Sikombe Granite                     | None      | N*so                         | AP          | *                                      | *           | Namaquan                | Sys        | Ca   |
| 452        | Silambo                             | Formation | N*si                         | AP          | Tugela                                 | Group       | Namaquan                | Sys        |      |
| 498        | Silver River                        | Formation | Nsi                          | AP          | Kaaimans                               | Group       | Namibian                | Era        |      |
| 288        | Silverton                           | Formation | Vsi                          | AP          | Pretoria                               | Group       | Vaalian                 | Era        |      |
| 945        | Singelele Gneiss                    | None      | Rsi                          | AP          | Beit Bridge                            | Complex     | Randian                 | Era        |      |
| 1734       | Singeni                             | Formation | Rsq                          | AP          | Mozaan                                 | Group       | Randian                 | Era        |      |
| 714        | Sishen                              | Member    | Vsn                          | AP          | Gamagara                               | Formation   | Vaalian                 | Era        |      |
| 813        | Sithilo Serpentinite-Talc           | Complex   | N*st                         | AP          | *                                      | *           | Namaquan                | Sys        |      |
| 1750       | Situndu                             | Member    | Os                           | AP          | Durban                                 | Formation   | Ordovician              | Sys        | LS   |
| 501        | Skaapkop                            | Formation | Nsk                          | AP          | Kaaimans                               | Group       | Namibian                | Era        |      |
| 943        | Skalkseput Granite                  | None      | Rss                          | AP          | *                                      | *           | Randian                 | Era        |      |
| 1229       | Skeerhok Granite                    | None      | N*sk                         | NY          | Keimoes                                | Suite       | Namaquan                | Svs        |      |
| 392        | Skelmpoort                          | Formation | K*sm                         | NY          | Aggenevs                               | Subgroup    | Kheisian                | Svs        |      |
| 732        | Skerpioenpunt                       | Member    | K*sr                         | AP          | Groblershoop                           | Formation   | Kheisian                | Svs        |      |
| 515        | Skilpadhek                          | Group     | Rsp                          | NY          | Transvaal                              | Supergroup  | Randian                 | Ēra        |      |
| 412        | Skilpadkop                          | Formation | K*sk                         | AP          | Matlabas                               | Subgroup    | Kheisian                | Svs        |      |
| 772        | Skittervkloof                       | Member    | Dsk                          | AP          | Witpoort                               | Formation   | Devonian                | Svs        |      |
| 567        | Skoorsteenberg                      | Formation | Ps                           | NY          | Ecca                                   | Group       | Permian                 | Svs        |      |
| 2112       | Skuitklin Granite                   | None      | N*sku                        | NY          | *                                      | *           | Namaquan                | Sys        |      |
| 524        | Skurweberg                          | Formation | Ss                           | AP          | Nardouw                                | Subgroup    | Silurian                | Sys        | LS   |
| 179        | Skurwerant                          | Formation | Rsk                          | AP          | Mozaan                                 | Group       | Randian                 | Era        | 1.0  |
| 607        | Slagboom                            | Formation | Iel                          | AP          | Suurberg                               | Group       | Intrassic               | Sve        | Ca   |
| 1114       | Slaphakekeen Gneiss                 | None      | ]51<br>Ni*el                 | NV          | *                                      | *           | Namaguan                | Sys        | Ca   |
| 1007       | Slopt Granita                       | None      | N/C*c                        |             | Capo Granito                           | Suito       | Combrian                | Sys        | Ca   |
| 1997       | Slept Crapito                       | None      | $N/C*_{0}$                   | AD          | Cape Granite                           | Suite       | Namibian                | Gys<br>Eno | Ca   |
| 2175       | Sient Granite                       | None      | N/C*sh                       |             | Cape Granite                           | Suite       | Combrian                | Ena<br>Suc | Ca   |
| 2175       | Suppers Day Granite                 | None      | N/C*sb                       |             | Cape Granite                           | Suite       | Namibian                | Sys<br>Eno |      |
| 225        | Suppers Day Granite                 | Formation | IN/C'SD<br>IZ*al             | NV          | *                                      | *           | Vhoisian                | Ena<br>Suc |      |
| 222        | Stypsteenkrans                      | Nege      | N <sup>+</sup> SI<br>NI*ah   | IN I<br>NIV | *                                      | *           | Niemann                 | Sys        |      |
| 2114       | Smalnoek Gneiss                     | Formation | IN <sup>4</sup> SH           |             | Dustaula                               | T.          | Waallan                 | Sys        |      |
| 298        | Smellerskop                         | Nege      | V SIII                       | AP          | *                                      | Group<br>*  | V aanan<br>D a a di a a | Era        |      |
| 999        | Sintskiaa Granite                   | None      | Dag                          | NIV         | *                                      | *           | Dandian                 | Бла        |      |
| 944<br>702 | Soekinekaar Granite                 | None      | KSO                          | IN I<br>A D | •••••••••••••••••••••••••••••••••••••• | T.          | Kandian                 | Era        |      |
| 700        | Soetgenoeg                          | F         | NSO<br>NT                    | AP          | Sundays River                          | Contraction | Cretaceous              | Sys        |      |
| 502        | Soetkraal                           | Formation | INSO<br>D/TD.                | AP          | Kaaimans                               | Group       | D                       | Era        |      |
| 599        | Solitude                            | Formation | P-1KS<br>D/TD                | AP          | Karoo                                  | Supergroup  | Permian                 | Sys        |      |
| 240        | Solitude                            | Formation | P-1KS                        | AP          | Karoo                                  | supergroup  | I fiassic               | Sys        |      |
| 560        | Sout River                          | Formation | K <sup>+</sup> SV<br>C · · · |             | *<br>V                                 | т<br>С. 1   | Kneisian                | Sys        |      |
| 551        | Soutkloof                           | Formation | Cso                          | AP          | Kommadagga                             | Subgroup    | Carboniferous           | Sys        | 0    |
| 58         | Soutpansberg                        | Group     | K*s                          | AP          | *                                      | *           | Kheisian                | Sys        | Ca   |
| 325        | Soutputs                            | Formation | K*so                         | NY          | *                                      | *           | Kheisian                | Sys        |      |
| 862        | Spektakel                           | Suite     | N*s                          | AP          | *                                      | *           | Namaquan                | Sys        |      |
| 321        | Spioenkop                           | Formation | K*sp                         | AP          | *                                      | *           | Kheisian                | Sys        | 1.60 |
| 828        | Spitskop                            | Complex   | N*sp                         | AP          | *                                      | *           | Namaquan                | Sys        | MS   |
| 369        | Sprigg                              | Formation | N*sg                         | NY          | Areachap                               | Group       | Namaquan                | Sys        |      |
| 2027       | Springbok                           | Formation | K*sg                         | NY          | Khurisberg                             | Subgroup    | Kheisian                | Sys        |      |
| 1332       | Springtontyn                        | Formation | Qsp                          | NY          | Sandveld                               | Group       | Quaternary              | Sys        |      |
| 623        | St Lucia                            | Formation | Kst                          | AP          | Zululand                               | Group       | Cretaceous              | Sys        |      |
| 1675       | Stalhoek                            | Complex   | K*sh                         | NY          | *                                      | *           | Kheisian                | Sys        |      |
| 949        | Stavoren Granophyre                 | None      | Vsv                          | AP          | Rashoop Granophyre                     | Suite       | Vaalian                 | Era        |      |
| 426        | Stayt                               | Formation | K*sy                         | AP          | Soutpansberg                           | Group       | Kheisian                | Sys        |      |
| 988        | Steelpoort Park Granite             | None      | Vsp                          | NY          | Lebowa Granite                         | Suite       | Vaalian                 | Era        |      |
| 2177       | Steenbergs Cove Granite<br>Porphyry | None      | C*sn                         | AP          | Cape Granite                           | Suite       | Cambrian                | Sys        |      |
| 294        | Steenkampsberg                      | Formation | Vsb                          | AP          | Pretoria                               | Group       | Vaalian                 | Era        |      |
| 466        | Steenkampsputs                      | Formation | N*ste                        | AP          | Koras                                  | Group       | Namaquan                | Sys        | Ca   |
| 1195       | Steenkampsvlakte                    | Member    | Pst                          | NY          | Teekloof                               | Formation   | Permian                 | Sys        |      |
| 2210       | Steenkampsvlei                      | Member    | K*ste                        | NY          | Kraandraai                             | Formation   | Namaquan                | Sys        |      |
| 188        | Steenkop                            | Formation | Rst                          | AP          | Prieskaspoort                          | Subgroup    | Randian                 | Era        |      |
| 1016       | Steinkopf Gneiss                    | None      | K*sf                         | AP          | Gladkop                                | Suite       | Kheisian                | Sys        |      |
| 2086       | Stellenbosch Batholith              | Batholith | N-C*st                       | IF          | Cape Granite                           | Suite       | Cambrian                | Sys        |      |
| 2086       | Stellenbosch Batholith              | Batholith | N-C*st                       | IF          | Cape Granite                           | Suite       | Namibian                | Era        |      |

| CODE | LITHO NAME                    | RANK          | LABEL       | ST          | PARENT NAME   | RANK       | CHRONO<br>NAME | RANK       | PUB  |
|------|-------------------------------|---------------|-------------|-------------|---------------|------------|----------------|------------|------|
| 422  | Sterk River                   | Formation     | K*st        | AP          | Nylstroom     | Subgroup   | Kheisian       | Sys        |      |
| 671  | Sterkfontein                  | Formation     | C^st        | AP          | *             | *          | Cenozoic       | Era        |      |
| 140  | Steynskraal                   | Formation     | Zst         | NY          | *             | *          | Swazian        | Era        |      |
| 1045 | Stillerus Metagabbro          | None          | N*sti       | NY          | *             | *          | Namaquan       | Sys        |      |
| 476  | Stinkfontein                  | Subgroup      | Nst         | AP          | Port Nolloth  | Group      | Namibian       | Era        | IP   |
| 2057 | Stoffelskop                   | Formation     | Mst         | NY          | Kamiesberg    | Subgroup   | Mokolian       | Era        |      |
| 1999 | Stofkraal                     | Formation     | C*st        | NY          | Brandkop      | Subgroup   | Cambrian       | Sys        |      |
| 917  | Stolzburg Gneiss              | None          | Zsz         | AP          | *             | *          | Swazian        | Era        |      |
| 1078 | Stolzenfels Enderbite         | None          | N*sto       | NY          | *             | *          | Namaquan       | Sys        |      |
| 1705 | Strandveld                    | Formation     | Ost         | NY          | Bredasdorp    | Group      | Quaternary     | Svs        |      |
| 1028 | Straussburg Granite           | None          | N*str       | AP          | Keimoes       | Suite      | Namaquan       | Svs        | Ca   |
| 286  | Strubenkop                    | Formation     | Vst         | AP          | Pretoria      | Group      | Vaalian        | Era        |      |
| 1065 | Stukkende Dam Granite         | None          | N*stu       | NY          | Keimoes       | Suite      | Namaguan       | Svs        |      |
| 1775 | Styger Kraal Svenite          | None          | N*stv       | NY          | Spektakel     | Suite      | Namaguan       | Svs        |      |
| 362  | Sultanaoord                   | Formation     | K*su        | AP          | Vaalkoppies   | Group      | Kheisian       | Svs        |      |
| 1169 | Sun City Svenite              | None          | N*su        | NY          | Pilanesberg   | Complex    | Namaquan       | Svs        |      |
| 612  | Sundays River                 | Formation     | Ks          | AP          | Uitenhage     | Group      | Cretaceous     | Sys        |      |
| 895  | Sutherland                    | Suite         | Ksu         | AP          | *             | *          | Cretaceous     | Sys        |      |
| 79   | Suurberg                      | Group         | Is          | AP          | *             | *          | Iurassic       | Sys        | Са   |
| 410  | Swaershoek                    | Formation     | J5<br>K*sw  | AP          | Nylstroom     | Subgroup   | Kheisian       | Sys        | 0a   |
| 1084 | Swapartz Gneiss               | None          | N*en        | NV          | *             | *          | Namaquan       | Svs        |      |
| 768  | Swart River Phyllite          | Member        | New         | AD          | Skaapkop      | Formation  | Namibian       | Era        |      |
| 1776 | Swarthank Granita             | None          | N/C*em      | NV          | Кироос Вготор | Suito      | Cambrian       | Suc        |      |
| 1776 | Swartbank Granite             | None          | N/C*sw      | NV          | Kuboos Bromon | Suite      | Namihian       | Sys<br>Ere |      |
| 1770 | Swartballk Grainte            | Formation     | Darra       | IN I<br>NIV | Mamadala      | Crewe      | Dendian        | Епа        |      |
| 1210 | Swartkop                      | Formation     | KSW<br>L IZ | AD          | Marydale      | Group      | Kandian        | Era        |      |
| 780  | Swartkops Sandstone           | Member        | J-KS        | AP          | KifKWOOd      | Formation  | Cretaceous     | Sys        |      |
| /80  | Swartkops Sandstone           | Member        | J-KS        | AP          | Kirkwood      | Formation  | Jurassic       | Sys        | C    |
| 467  | Swartkopsleegte               | Formation     | N*sw<br>C^  | AP          | Koras         | Group      | Namaquan       | Sys        | Ca   |
| 672  | Swartkrans                    | Formation     | Crsw        | AP          | *             | *          | Cenozoic       | Era        |      |
| 113  | Swartland                     | Subgroup      | INS         | AP          | Malmesbury    | Group      | Namibian       | Era        |      |
| 1077 | Swartmodder<br>Granite/Gneiss | None          | N*sm        | NY          | *             | *          | Namaquan       | Sys        |      |
| 2113 | Swartoup Enderbite            | None          | N*sr        | NY          | *             | *          | Namaquan       | Sys        |      |
| 1231 | Swartputs Granite             | None          | N*swp       | NY          | Keimoes       | Suite      | Namaquan       | Sys        |      |
| 1718 | Swartrant                     | Formation     | Psw         | NY          | Karoo         | Supergroup | Permian        | Sys        |      |
| 544  | Swartruggens                  | Formation     | Dsw         | AP          | Weltevrede    | Subgroup   | Devonian       | Sys        | Ca   |
| 550  | Swartwaterspoort              | Formation     | Csw         | AP          | Kommadagga    | Subgroup   | Carboniferous  | Sys        |      |
| 2096 | Swellendam Pluton             | Pluton        | N-C*sw      | IF          | Cape Granite  | Suite      | Cambrian       | Sys        |      |
| 2096 | Swellendam Pluton             | Pluton        | N-C*sw      | IF          | Cape Granite  | Suite      | Namibian       | Era        |      |
| 195  | Syferfontein                  | Formation     | Rs          | AP          | Dominion      | Group      | Randian        | Era        |      |
| 382  | T <sup>'</sup> hammaberg      | Formation     | K*tm        | NY          | Nab           | Subgroup   | Kheisian       | Sys        | MS   |
| 1226 | T'Oubep                       | Suite         | N*tb        | AP          | *             | *          | Namaquan       | Sys        | Ca   |
| 71   | Table Mountain                | Group         | O-Dt        | AP          | Cape          | Supergroup | Devonian       | Sys        | Ca   |
| 71   | Table Mountain                | Group         | O-Dt        | AP          | Cape          | Supergroup | Ordovician     | Svs        | Ca   |
| 71   | Table Mountain                | Group         | O-Dt        | AP          | Cape          | Supergroup | Silurian       | Svs        | Ca   |
| 738  | Tafelkop Conglomerate         | Member        | K*ta        | AP          | Mogalakwena   | Formation  | Kheisian       | Svs        |      |
| 2116 | Tafelkop Gneiss               | None          | N*ta        | NY          | *             | *          | Namaguan       | Svs        |      |
| 165  | Taka                          | Formation     | Rta         | AP          | Nsuze         | Group      | Randian        | Era        |      |
| 127  | Tarkastad                     | Subgroup      | TRt         | AP          | Beaufort      | Group      | Triassic       | Svs        |      |
| 1398 | Tatasberg                     | Complex       | N-C*t       | AP          | Kuboos-Bremen | Suite      | Cambrian       | Svs        |      |
| 1398 | Tatasberg                     | Complex       | N-C*t       | AP          | Kuboos-Bremen | Suite      | Namibian       | Era        |      |
| 667  | Tauno                         | Formation     | Ot          | AP          | *             | *          | Pleistocene    | Ser        |      |
| 1193 | Teekloof                      | Formation     | Pte         | AP          | Adelaide      | Subgroup   | Permian        | Svs        |      |
| 1236 | Terra Nostra                  | Formation     | Zte         | NY          | *             | *          | Swazian        | Era        | MS   |
| 1250 | Thalalane Feldspathic         | 1 Officiation |             |             |               |            | 5 w aziaii     | 1.11.4     | 1410 |
| 742  | Sandstone                     | Member        | K*th        | AP          | Blouberg      | Formation  | Kheisian       | Sys        |      |
| 1733 | I halu                        | Formation     | Ktl         | AP          | Dwaalhoek     | Subgroup   | Kandian        | Era        |      |
| 449  | Thawini                       | Formation     | N*tw        | AP          | Tugela        | Group      | Namaquan       | Sys        |      |
| 129  | Theespruit                    | Formation     | Zth         | AP          | Tjakastad     | Subgroup   | Swazian        | Era        |      |
| 162  | Thembeni                      | Formation     | Rte         | AP          | Nsuze         | Group      | Randian        | Era        |      |
| 840  | Thole                         | Suite         | Rth         | NY          | *             | *          | Randian        | Era        |      |
| 458  | Thondo                        | Formation     | N*th        | AP          | Matigulu      | Group      | Namaquan       | Sys        |      |
| 566  | Tierberg                      | Formation     | Pt          | AP          | Ecca          | Group      | Permian        | Sys        | MS   |
| 1172 | Timbavati Gabbro              | None          | N*ti        | AP          | *             | *          | Namaquan       | Sys        |      |

| CODE       | LITHO NAME             | RANK       | LABEL        | ST          | PARENT NAME                | RANK       | CHRONO<br>NAME       | RANK  | PUB  |
|------------|------------------------|------------|--------------|-------------|----------------------------|------------|----------------------|-------|------|
| 282        | Timeball Hill          | Formation  | Vti          | AP          | Pretoria                   | Group      | Vaalian              | Era   | -    |
| 85         | Tjakastad              | Subgroup   | Zt           | AP          | Onverwacht                 | Group      | Swazian              | Era   |      |
| 1785       | Tobolsk                | Formation  | Rto          | AP          | Odwaleni                   | Subgroup   | Randian              | Era   |      |
| 354        | Toeslaan               | Formation  | K*to         | AP          | Biesje Poort               | Group      | Kheisian             | Sys   |      |
| 1704       | Toggekry               | Formation  | Zto          | AP          | Nondweni                   | Group      | Swazian              | Era   | Ca   |
| 447        | Tondweni               | Formation  | N*to         | AP          | Tugela                     | Group      | Namaquan             | Svs   |      |
| 726        | Top Dog                | Formation  | K*td         | AP          | Brulsand                   | Subgroup   | Kheisian             | Svs   |      |
| 532        | Tra-Tra                | Formation  | Dtr          | AP          | Ceres                      | Subgroup   | Devonian             | Svs   |      |
| 122        | Traka                  | Suberoup   | Dt           | AP          | Bokkeveld                  | Group      | Devonian             | Svs   | Са   |
| 931        | Transport Granite      | None       | Rtr          | AP          | Mashishimale               | Suite      | Randian              | Era   |      |
| 10         | Transvaal              | Supergroup | Vt           | AP          | *                          | *          | Vaalian              | Era   |      |
| 829        | Trompsburg             | Complex    |              | AP          | *                          | *          | Proterozoic          | Eon   |      |
| 1744       | Trumpeters             | Member     | Ptr          | AP          | Ripon                      | Formation  | Permian              | Svs   | LS   |
| 402        | Teams                  | Formation  | K*ts         | AP          | Haib                       | Subgroup   | Kheisian             | Sve   |      |
| 1777       | Teamela Graise         | None       | Zte          | NV          | *                          | *          | Swazian              | Era   |      |
| 505        | Tshidzi                | Formation  | Dto          |             | Karoo                      | Supararoup | Dormian              | Suc   |      |
| 407        | Tabifacfac             | Formation  | 115          |             | Kailoo                     | Supergroup | Vhoisian             | Sys   |      |
| 427<br>770 | Tshining               | Mombor     | Γ.'t<br>I+   |             | Clargers                   | Formation  | Lumacaia             | Sys   |      |
| 1100       | Tshipise               | Nember     | JL           | AP          | *                          | *          | Jurassic             | Sys   | _    |
| 1180       | T snokwane Granopnyre  | None       | Jts<br>Nt*r  | AP          | *                          | *          | Jurassic             | Sys   |      |
| 61         | Tugela                 | Group      | N^t<br>N™t   | AP          | *                          | *          | Namaquan             | Sys   | -    |
| 8/1        | Tugela Rand Layered    | Suite      | N*tg<br>N™tg | AP          | *                          | *          | Namaquan             | Sys   | Ca   |
| 1108       | Tuins Granite          | None       | N*tn         | NY          | *                          | *          | Namaquan             | Sys   |      |
| 1753       | Tulini                 | Member     | Ot           | AP          | Mariannhill                | Formation  | Ordovician           | Sys   | LS   |
| 443        | Tuma                   | Formation  | N*tu         | AP          | Tugela                     | Group      | Namaquan             | Sys   |      |
| 94         | Turffontein            | Subgroup   | Rt           | AP          | Central Rand               | Group      | Randian              | Era   |      |
| 928        | Turfloop Granite       | None       | Rtu          | AP          | *                          | *          | Randian              | Era   |      |
| 1129       | Turtle Bay             | Suite      | N*tt         | AP          | *                          | *          | Namaquan             | Sys   | Ca   |
| 1788       | Tusschenin             | Formation  | Rts          | NY          | Government                 | Subgroup   | Randian              | Era   |      |
| 1166       | Tusschenkomst Foyaite  | None       | N*ts         | AP          | Pilanesberg                | Complex    | Namaquan             | Sys   |      |
| 1012       | Twakputs Gneiss        | None       | K*tw         | AP          | Koelmanskop<br>Metamorphic | Suite      | Kheisian             | Sys   | Ca   |
| 1161       | Tweefontein Breccia    | None       | N*tf         | AP          | Pienaars River             | Complex    | Namaquan             | Sys   |      |
| 969        | Tweelaagte Bronzitite  | None       | Vtw          | AP          | Vlakfontein                | Subsuite   | Vaalian              | Era   |      |
| 830        | Tweerivier Carbonatite | Complex    | N*tr         | AP          | *                          | *          | Namaquan             | Sys   |      |
| 489        | Tygerberg              | Formation  | Nt           | AP          | Malmesbury                 | Group      | Namibian             | Era   |      |
| 270        | Tygerkloof             | Formation  | Rty          | AP          | Buffelsfontein             | Group      | Randian              | Era   |      |
| 2014       | Uilkraal               | Member     | Nui          | NY          | Dabis                      | Formation  | Namibian             | Era   |      |
| 364        | Uitdraai               | Formation  | K*u          | AP          | Brulpan                    | Group      | Kheisian             | Sys   |      |
| 80         | Uitenhage              | Group      | J-Ku         | AP          | *                          | *          | Cretaceous           | Sys   |      |
| 80         | Uitenhage              | Group      | J-Ku         | AP          | *                          | *          | Iurassic             | Svs   |      |
| 853        | Uitkomst               | Complex    | Vui          | NY          | *                          | *          | Vaalian              | Ēra   |      |
| 2176       | Uitkoms Granite        | None       | N/C*u        | AP          | Cape Granite               | Suite      | Cambrian             | Svs   |      |
| 2176       | Uitkoms Granite        | None       | N/C*u        | AP          | Cape Granite               | Suite      | Namibian             | Era   |      |
| 152        | Uitkyk                 | Formation  | Zu           | AP          | Pietersburg                | Group      | Swazian              | Era   |      |
| 930        | Litloop Granite        | None       | Rui          | AP          | Mashashane                 | Suite      | Randian              | Era   | IP   |
| 494        | Litylug                | Formation  | C*11         | AP          | Kansa                      | Group      | Cambrian             | Sve   | <br> |
| 2120       | Litylugt Granite       | None       | Ruv          | AD          | Mashashane                 | Suite      | Randian              | Era   | Ga   |
| 101        | Litzigt                | Formation  | Ruv          |             | Doorpfontoin               | Subgroup   | Randian              | Era   |      |
| 707        | Ulzg                   | Member     | Tum          | NV          | Roivilo                    | Eormation  | Valian               | Era   |      |
| (25        | Ulco                   | Eamatian   | Tun<br>Tu    | IN I<br>A D | *                          | *          | V aanan<br>Toutiours | Crea  |      |
| 023        | Uloa di Canalamanta    | Marchan    | 1u<br>Ou     |             | Durkar                     | Esumation  | Ordenieler           | Sys   | TC   |
| //3        | Ulundi Conglomerate    | Member     | Ou<br>T      | AP          | Durban                     | Formation  | Ordovician           | Sys   | 1.5  |
| 214/       | Umkwelane              | Formation  | Tum          |             | Maputaland                 | Group      | Neogene              | Sbsys |      |
| /03        | Union 1 in 1 uff       | Member     | Vun          | AP          | Kwaggasnek                 | Formation  | Vaalian              | Era   |      |
| 1294       | Upper                  | Zone       | Vu           | IF          | Rustenburg Layered         | Suite      | Vaalian              | Era   |      |
| 2005       | Urusis                 | Formation  | Nu           | AP          | Schwarzrand                | Subgroup   | Namibian             | Era   |      |
| 804        | Usushwana              | Complex    | Ru           | AP          | *                          | *          | Kandian              | Era   |      |
| 2142       | Usutu                  | Suite      | Zus          | NA          | *                          | *          | Swazian              | Era   |      |
| 1001       | Utrecht Granite        | None       | Vut          | AP          | *                          | *          | Vaalian              | Era   |      |
| 1237       | Vaalfontein Gneiss     | None       | Rva          | NY          | *                          | *          | Randian              | Era   |      |
| 1104       | Vaalhoek Granite       | None       | N*va         | NY          | *                          | *          | Namaquan             | Sys   |      |
| 680        | Vaalkop Rhyolite       | Member     | Rvk          | AP          | Amsterdam                  | Formation  | Randian              | Era   |      |
| 51         | Vaalkoppies            | Group      | K*va         | NY          | *                          | *          | Kheisian             | Sys   |      |
| 1023       | Vaalputs Granite       | None       | N*v          | NY          | Keimoes                    | Suite      | Namaquan             | Sys   |      |
| 416        | Vaalwater              | Formation  | K*vw         | AP          | Kransberg                  | Subgroup   | Kheisian             | Sys   |      |

| CODE       | LITHO NAME                        | RANK         | LABEL                       | ST          | PARENT NAME                   | RANK        | CHRONO<br>NAME | RANK       | PUB |
|------------|-----------------------------------|--------------|-----------------------------|-------------|-------------------------------|-------------|----------------|------------|-----|
| 493        | Vaartwell                         | Formation    | C*v                         | AP          | Kansa                         | Group       | Cambrian       | Sys        | Ca  |
| 358        | Valsvlei                          | Formation    | K*vv                        | NY          | Biesje Poort                  | Group       | Kheisian       | Sys        |     |
| 1440       | Van Den Heeversrust               | Member       | Rvh                         | NY          | Elsburg                       | Formation   | Randian        | Era        |     |
| 508        | Van Stadens                       | Formation    | NVS                         | NY          | Gamtoos                       | Group       | Namibian       | Era        |     |
| 1228       | Van Wyks Pan                      | Formation    | N*vw                        | NY          | Areachap                      | Group       | Namaquan       | Sys        |     |
| 2000       | Van Zylkop                        | Formation    | C*vz                        | NY          | Brandkop                      | Subgroup    | Cambrian       | Sys        |     |
| 70         | Vanrhynsdorp                      | Group        | N-C*V                       | NY          | *                             | *           | Cambrian       | Sys        |     |
| /0         | Vanrnynsdorp                      | Group        | N-C <sup>+</sup> V          | IN Y        |                               | т.<br>С. 1. | Namibian       | Era        |     |
| 624        | Varsput Granodiorite              | Formation    | n∾vp<br>T <sub>T</sub>      | AD          | Sandwold                      | Crown       | Tortion        | Sys        | MS  |
| 1331       | Valswater                         | Formation    | 1 V<br>Ov                   |             | Sandveld                      | Group       | Quaterpary     | Sys        | MIS |
| 5          | Ventersdorp                       | Supergroup   | Qv<br>Rv                    | AD          | *                             | *           | Randian        | Era        |     |
| 348        | Venterskop                        | Formation    | K*vn                        | NV          | *                             | *           | Kheisian       | Sve        |     |
| 1397       | Venterspost                       | Formation    | Rve                         | AP          | *                             | *           | Randian        | Era        |     |
| 1577       | Verena Porphyritic                | 1 Offication | I.v.c                       | 111         |                               |             | Ranchan        | гла        |     |
| 985        | Granite                           | None         | Vvn                         | AP          | Lebowa Granite                | Suite       | Vaalian        | Era        |     |
| 581        | Verkykerskop                      | Formation    | TRv                         | NY          | Tarkastad                     | Subgroup    | Triassic       | Svs        | _   |
| 291        | Vermont                           | Formation    | Vve                         | AP          | Pretoria                      | Group       | Vaalian        | Era        |     |
| 0.50       | Verongelukspruit                  |              |                             |             |                               | · · ·       |                | -          |     |
| 950        | Granophyre                        | None         | Vvg                         | ΝY          | Rashoop Granophyre            | Suite       | Vaalian        | Era        |     |
| 725        | Verwater                          | Formation    | K*ve                        | AP          | Brulsand                      | Subgroup    | Kheisian       | Sys        |     |
| 785        | Vetmaak                           | Member       | Kv                          | AP          | Sundays River                 | Formation   | Cretaceous     | Sys        |     |
| 503        | Victoria Bay                      | Formation    | Nvi                         | AP          | Kaaimans                      | Group       | Namibian       | Era        |     |
| 979        | Villa Nora Gabbro-<br>Anorthosite | None         | Vvi                         | NY          | Rustenburg Layered            | Suite       | Vaalian        | Era        |     |
| 857        | Vioolsdrif                        | Suite        | K*vi                        | AP          | *                             | *           | Kheisian       | Svs        |     |
| 563        | Vischkuil                         | Formation    | Pvi                         | AP          | Ecca                          | Group       | Permian        | Sys        | LS  |
| 900        | Vlakfontein                       | Subsuite     | Vvl                         | NY          | Rustenburg Layered            | Suite       | Vaalian        | Ēra        |     |
| 678        | Vlakhoek                          | Member       | Rvl                         | AP          | Sinqeni                       | Formation   | Randian        | Era        |     |
| 2021       | Vlakmyn Syenite                   | None         | N*vl                        | NY          | Little Namaqualand            | Suite       | Namaquan       | Sys        |     |
| 1212       | Vogelstruisbult                   | Formation    | K*vo                        | NY          | Jacomyns Pan                  | Group       | Kheisian       | Sys        |     |
| 572        | Volksrust                         | Formation    | Pvo                         | AP          | Ecca                          | Group       | Permian        | Sys        |     |
| 2209       | Volmoed                           | Formation    | K*vl                        | NY          | *                             | *           | Namaquan       | Sys        |     |
| 45         | Volop                             | Group        | K*v                         | AP          | Olifantshoek                  | Supergroup  | Kheisian       | Sys        |     |
| 974        | Volspruit Pyroxenite              | None         | Vvo                         | AP          | Zoetveld                      | Subsuite    | Vaalian        | Era        | MS  |
| 530        | Voorstehoek                       | Formation    | Dv                          | AP          | Ceres                         | Subgroup    | Devonian       | Sys        | MS  |
| 848        | Vorster                           | Suite        | Rvo                         | NY          | *                             | *           | Randian        | Era        |     |
| 315        | Voëlwater                         | Subgroup     | Vv                          | AP          | Postmasburg                   | Group       | Vaalian        | Era        |     |
| 757        | Vredefontein                      | Formation    | Nvr                         | AP          | Stinkfontein                  | Subgroup    | Namibian       | Era        | IP  |
| 2083       | Vredenburg Batholith              | Batholith    | N-C*vr                      | IF          | Cape Granite                  | Suite       | Cambrian       | Sys        | IP  |
| 2083       | Vredenburg Batholith              | Batholith    | N-C*vr                      | IF          | Cape Granite                  | Suite       | Namibian       | Era        |     |
| 2173       | Vredenburg Granite                | None         | N/C*ve                      | AP          | Cape Granite                  | Suite       | Cambrian       | Sys        |     |
| 2173       | Vredenburg Granite                | None         | N/C*ve                      | AP          | Cape Granite                  | Suite       | Namibian       | Era        |     |
| 151        | Vrischgewaagd                     | Formation    | Zv                          | AP          | Pietersburg                   | Group       | Swazian        | Era        |     |
| /28        | Vryboom                           | Formation    | K*vr                        | AP          | Brulsand                      | Subgroup    | Kheisian       | Sys        | TC  |
| 507        | Vryburg                           | Formation    | Vvr                         | AP          | I ransvaal                    | Supergroup  | Vaalian        | Era        | LS  |
| 3/1<br>727 | Vryneid                           | Formation    | PV<br>V*                    | AP          | Ecca<br>Devlace d             | Group       | Vermian        | Sys        |     |
| 172        | Vuinek                            | Formation    | K <sup>+</sup> Vu<br>D      | AP          | Bruisand                      | Subgroup    | Rheisian       | Sys        |     |
| 175        | Vulsnin                           | Contraction  | Kvu<br>V*l                  | AP          | Nsuze<br>Viagladnić           | Group       | Kandian        | Era        |     |
| 905        | Vuurdood<br>Vuthalaar Matamarahia | Subsuite     | K <sup>+</sup> Vu<br>V*···· | IN I<br>NIV | Viooisufii<br>Liarthaga Piyor | Complex     | Kheisian       | Sys        |     |
| 855<br>750 | Wasibook                          | Mombor       | Nuvo                        |             | Portorvillo                   | Eormation   | Namibian       | Sys<br>Ero |     |
| 548        | Waaiooort                         | Formation    | Cw                          | AD          | I oftervine<br>Lake Mentz     | Subgroup    | Carboniferous  | Sve        |     |
| 534        | Waboomberg                        | Formation    | Dwb                         | AP          | Bidouw                        | Subgroup    | Devonian       | Sys        |     |
| 1350       | Wachteenbeetie                    | Formation    | Rwc                         | AP          | Transvaal                     | Supergroup  | Bandian        | Era        | Ca  |
| 644        | Waenhuiskrans                     | Formation    | Ow                          | AP          | Bredasdorp                    | Group       | Pleistocene    | Ser        | LS  |
| 542        | Wagen Drift                       | Formation    | Qwa<br>Dwa                  | AP          | Weltevrede                    | Suberoup    | Devonian       | Svs        | 1.0 |
| 1727       | Wallekraal                        | Formation    | Nw                          | NY          | Hilda                         | Suberoun    | Namibian       | Era        | IP  |
| 1162       | Wallmannsthal Fovaite             | None         | N*wl                        | AP          | Pienaars River                | Complex     | Namaquan       | Svs        |     |
| 1778       | Wangu Granite Gneiss              | None         | N*wn                        | AP          | *                             | *           | Namaquan       | Sys        | Ca  |
| 642        | Wankoe                            | Formation    | Tw                          | AP          | Bredasdorp                    | Group       | Pliocene       | Ser        | LS  |
| 2115       | Warmbad Suid Granite              | None         | N*wb                        | NY          | *                             | *           | Namaquan       | Sys        |     |
| 682        | Water Tower Shale                 | Member       | Rwt                         | AP          | Parktown                      | Formation   | Randian        | Era        |     |
| 57         | Waterberg                         | Group        | K*w                         | AP          | *                             | *           | Kheisian       | Sys        |     |

| CODE        | LITHO NAME                         | RANK        | LABEL              | ST       | PARENT NAME             | RANK       | CHRONO<br>NAME | RANK       | PUB |
|-------------|------------------------------------|-------------|--------------------|----------|-------------------------|------------|----------------|------------|-----|
| 565         | Waterford                          | Formation   | Pwa                | AP       | Ecca                    | Group      | Permian        | Sys        |     |
| 1716        | Waterkloof                         | Formation   | Pwk                | NY       | Dwyka                   | Group      | Permian        | Sys        |     |
| 1220        | Waterkop                           | Suite       | N*wa               | AP       | *                       | *          | Namaquan       | Sys        | Ca  |
| 1745        | Waterloo                           | Member      | Vwa                | AP       | Vryburg                 | Formation  | Vaalian        | Era        | LS  |
| 268         | Waterval                           | Formation   | Rwa                | AP       | Buffelsfontein          | Group      | Randian        | Era        |     |
| 144         | Weigel                             | Formation   | Zwe                | AP       | Gravelotte              | Group      | Swazian        | Era        |     |
| 1998        | Wela                               | Formation   | Zwl                | AP       | *                       | *          | Swazian        | Era        | Са  |
| 1167        | Welgeval Fovaite                   | None        | N*wo               | AP       | Pilaneshero             | Complex    | Namaquan       | Svs        | Ga  |
| 471         | Welgevind                          | Formation   | N*we               | AP       | Koras                   | Group      | Namaquan       | Sve        | Ca  |
| 1717        | Wellington                         | Formation   | Dwe                | NV       | Dwwka                   | Group      | Permian        | Sve        | Ca  |
| 2001        | Wellington Pluton                  | Pluton      | N C*w              | IF       | Capa Granita            | Suito      | Cambrian       | Suc        |     |
| 2091        | Wellington Pluton                  | Pluton      | N C*w              | II<br>IE | Cape Granite            | Suite      | Namihian       | Sys<br>Eno |     |
| 102         | Wellterene de                      | Subaran     | D                  |          | Witteh and              | Crewe      | Demonian       | Ena<br>S-m |     |
| 125         | Welterrede                         | Subgroup    | Dw<br>D            | AP       | witteberg               | Group      | Devonian       | Sys        |     |
| 1224        | Weltevrede                         | Formation   | Dwe                | AP       | Witteberg               | Group      | Devonian       | Sys        |     |
| 657         | Wessels                            | Formation   | Twe                | AP       | Kalahari                | Group      | Tertiary       | Sys        |     |
| 28          | West Rand                          | Group       | Kwr                | AP       | Witwatersrand           | Supergroup | Randian        | Era        |     |
| /94         | Westerberg                         | Member      | Vwe                | AP       | Kuruman                 | Formation  | Vaalian        | Era        |     |
| 235         | Westonaria                         | Formation   | Rwe                | AP       | Klipriviersberg         | Group      | Randian        | Era        |     |
| 1755        | Westville                          | Member      | Ow                 | AP       | Mariannhill             | Formation  | Ordovician     | Sys        | LS  |
| 1780        | White Mfolozi                      | Formation   | Rwh                | NY       | Bivane                  | Subgroup   | Randian        | Era        |     |
| 559         | Whitehill                          | Formation   | Pw                 | AP       | Ecca                    | Group      | Permian        | Sys        | Ca  |
| 2041        | Widouw                             | Formation   | Nwi                | NY       | Gifberg                 | Group      | Namibian       | Era        |     |
| 417         | Wilge River                        | Formation   | K*wg               | AP       | Waterberg               | Group      | Kheisian       | Sys        |     |
| 1746        | Wilgehout River                    | Member      | Pwi                | AP       | Collingham              | Formation  | Permian        | Sys        | LS  |
| 53          | Wilgenhoutsdrif                    | Group       | N*w                | AP       | *                       | *          | Namaquan       | Sys        |     |
| 935         | Willie Granite                     | None        | Rwi                | AP       | Vorster                 | Suite      | Randian        | Era        |     |
| 663         | Windsorton                         | Formation   | C^w                | AP       | *                       | *          | Cenozoic       | Era        |     |
| 398         | Windvlakte                         | Formation   | K*wi               | AP       | Orange River            | Group      | Kheisian       | Sys        |     |
| 2059        | Winkelhaak                         | Member      | Rwn                | NY       | Kimberley               | Formation  | Randian        | Era        |     |
| 050         | Winnaarshoek Norite-               | <b>N</b> .T | <b>T</b> 7         | 4.75     | D. I.                   | 0.1        | 17 1           | F          |     |
| 958         | Anorthosite                        | None        | Vwn                | AP       | Dsjate                  | Subsuite   | Vaalian        | Era        |     |
| 2032        | Winterhoek                         | Subgroup    | Owi                | NY       | Table Mountain          | Group      | Ordovician     | Sys        |     |
|             | Winterveld Norite-                 |             | ••                 |          |                         |            |                | -          |     |
| 957         | Anorthosite                        | None        | Vwv                | AP       | Dwars River             | Subsuite   | Vaalian        | Era        |     |
| 269         | Witfonteinrant                     | Formation   | Rwf                | AP       | Buffelsfontein          | Group      | Randian        | Era        |     |
| 329         | Witklip                            | Formation   | K*wk               | NY       | Arribees                | Group      | Kheisian       | Svs        |     |
| 1706        | Witkop                             | Formation   | Zwi                | AP       | Nondweni                | Group      | Swazian        | Era        | Са  |
| 1103        | Witpad Granodiorite                | None        | N*wi               | AP       | T'Ouben                 | Suite      | Namaquan       | Svs        | Ca  |
| 545         | Witpoort                           | Formation   | Dwi                | AP       | Witteberg               | Group      | Devonian       | Sys        |     |
| 1707        | Witrivier                          | Formation   | Zw                 | AP       | *                       | *          | Swazian        | Era        | Ca  |
| 73          | Witteberg                          | Group       | D-Cw               | AP       | Cape                    | Supergroup | Carboniferous  | Sve        | Ga  |
| 73          | Witteberg                          | Group       | D Cw               | AP       | Cape                    | Supergroup | Devonian       | Suc        |     |
| 75          | wittebeig                          | Oloup       | D-Cw               | 111      | Koelmanskon             | Supergroup | Devoluan       | Sys        |     |
| 1013        | Witwater Gneiss                    | None        | K*ww               | NY       | Metamorphic             | Suite      | Kheisian       | Sys        |     |
| 4           | Witwatersrand                      | Supergroup  | Rw                 | AP       | *                       | *          | Randian        | Era        |     |
| 645         | Witzand                            | Formation   | Qwi                | NY       | Sandveld                | Group      | Quaternary     | Sys        |     |
| 343         | Wolfkop                            | Formation   | K*wo               | NY       | Vyfbeker<br>Metamorphic | Suite      | Kheisian       | Sys        |     |
| 36          | Wolkberg                           | Group       | Rwo                | AP       | Transvaal               | Supergroup | Randian        | Era        |     |
| 674         | Wolvenkop Ferruginous<br>Ouartzite | Bed         | Rwl                | AP       | Mantonga                | Formation  | Randian        | Era        |     |
| 1747        | Wonderfontein                      | Member      | Pwo                | AP       | Ripon                   | Formation  | Permian        | Svs        | LS  |
| 1179        | Woodville Granite                  | None        | N/C*w              | NY       | Cape Granite            | Suite      | Cambrian       | Svs        |     |
| 1179        | Woodville Granite                  | None        | N/C*w              | NY       | Cape Granite            | Suite      | Namibian       | Era        |     |
| 2095        | Worcester Granite                  | None        | N-C*wo             | IF       | Cape Granite            | Suite      | Cambrian       | Sve        |     |
| 2005        | Worcester Granite                  | None        | N C*wo             | IF       | Cape Granite            | Suite      | Namibian       | Era        |     |
| 386         | Wortel                             | Formation   | K*****             | NV       | Aggeneve                | Subgroup   | Kheisian       | Sve        |     |
| 457         | Woshane                            | Formation   | IX WI              |          | Tugela                  | Group      | Namaguer       | Sys        |     |
| 110         | Wosi                               | Formation   | IN WO              |          | Tugola                  | Group      | Namaquan       | Sys        |     |
| -++0<br>525 | Wupport-1                          | Formation   | IN WS              |          | i ugeia<br>Ridouw       | Subara     | Deve alex      | Sys        |     |
| 333         | wuppertai                          | Nega        | DWU<br>Nika 1      | AP       | Didouw                  | Subgroup   | Devonian       | Sys        |     |
| 1108        | wydnoek Foyaite                    | inone       | IN <sup>m</sup> Wd | AP       | ruanesperg              | Complex    | INamaquan      | Sys        | C   |
| 1088        | wyepoort Granite                   | INone       | IN^WY              | AP       | т<br>С 1                | *          | Namaquan       | Sys        | Ca  |
| 430         | Wyllies Poort                      | Formation   | K*wy               | AP       | Soutpansberg            | Group      | Kheisian       | Sys        | MS  |
| 1076        | Y as Gneiss                        | None        | K*v                | NY       | *                       | *          | Kheisian       | Svs        |     |

| CODE | LITHO NAME                       | RANK      | LABEL | ST | PARENT NAME        | RANK      | CHRONO<br>NAME | RANK | PUB |
|------|----------------------------------|-----------|-------|----|--------------------|-----------|----------------|------|-----|
| 148  | Ysterberg                        | Formation | Zy    | AP | Pietersburg        | Group     | Swazian        | Era  |     |
| 1333 | Yzerfontein Gabbro-<br>monzonite | None      | C*y   | NY | *                  | *         | Cambrian       | Sys  |     |
| 1098 | Zand Vley Granite                | None      | N*za  | AP | T'Oubep            | Suite     | Namaquan       | Sys  | Ca  |
| 330  | Zandbergshoop                    | Formation | K*z   | NY | De Kruis           | Group     | Kheisian       | Sys  |     |
| 2060 | Zandfontein                      | Member    | Rza   | NY | Kimberley          | Formation | Randian        | Era  |     |
| 150  | Zandrivierspoort                 | Formation | Zza   | AP | Pietersburg        | Group     | Swazian        | Era  |     |
| 2011 | Zaris                            | Formation | Nz    | AP | Kuibis             | Subgroup  | Namibian       | Era  |     |
| 259  | Zeekoebaart                      | Formation | Rz    | AP | *                  | *         | Randian        | Era  |     |
| 451  | Zidoni                           | Formation | N*zi  | AP | Tugela             | Group     | Namaquan       | Sys  |     |
| 2100 | Zoetfontein Gneiss               | None      | Rzo   | NY | *                  | *         | Randian        | Era  |     |
| 902  | Zoetveld                         | Subsuite  | Vzo   | NY | Rustenburg Layered | Suite     | Vaalian        | Era  |     |
| 372  | Zonderhuis                       | Formation | N*z   | AP | Wilgenhoutsdrif    | Group     | Namaquan       | Sys  |     |
| 2031 | Zout Rivier Basalt               | None      | Kzr   | NY | Koegel Fontein     | Complex   | Cretaceous     | Sys  |     |
| 1748 | Zoute Kloof                      | Member    | Pz    | AP | Collingham         | Formation | Permian        | Sys  | LS  |
| 81   | Zululand                         | Group     | Kz    | AP | *                  | *         | Cretaceous     | Sys  |     |
| 101  | Zuurwater                        | Subgroup  | K*zu  | NY | Bushmanland        | Group     | Kheisian       | Sys  |     |
| 454  | Zwaneni                          | Formation | N*zw  | AP | Tugela             | Group     | Namaquan       | Sys  |     |
| 947  | Zwartbank<br>Pseudogranophyre    | None      | Vz    | AP | Rashoop Granophyre | Suite     | Vaalian        | Era  |     |
| 133  | Zwartkoppie                      | Formation | Zzw   | AP | Geluk              | Subgroup  | Swazian        | Era  |     |
| 1693 | Zwartwater                       | Suite     | Zz    | AP | *                  | *         | Swazian        | Era  | Ca  |

| CHRONO UNIT TEXT LABELS INCORPORATED IN LITHO UNIT LABELS |               |             |  |  |  |  |  |
|-----------------------------------------------------------|---------------|-------------|--|--|--|--|--|
| TEXT LABEL                                                | CHRONO NAME   | CHRONO RANK |  |  |  |  |  |
| С                                                         | CARBONIFEROUS | SYS         |  |  |  |  |  |
| C*                                                        | CAMBRIAN      | SYS         |  |  |  |  |  |
| C^                                                        | CENOZOIC      | ERA         |  |  |  |  |  |
| D                                                         | DEVONIAN      | SYS         |  |  |  |  |  |
| J                                                         | JURASSIC      | SYS         |  |  |  |  |  |
| K                                                         | CRETACEOUS    | SYS         |  |  |  |  |  |
| K*                                                        | KHEISIAN      | SYS         |  |  |  |  |  |
| М                                                         | MOKOLIAN      | ERA         |  |  |  |  |  |
| Ν                                                         | NAMIBIAN      | ERA         |  |  |  |  |  |
| N*                                                        | NAMAQUAN      | SYS         |  |  |  |  |  |
| 0                                                         | ORDOVICIAN    | SYS         |  |  |  |  |  |
| Р                                                         | PERMIAN       | SYS         |  |  |  |  |  |
| Q                                                         | QUATERNARY    | SYS         |  |  |  |  |  |
| R                                                         | RANDIAN       | ERA         |  |  |  |  |  |
| S                                                         | SILURIAN      | SYS         |  |  |  |  |  |
| Т                                                         | TERTIARY      | SYS         |  |  |  |  |  |
| TR                                                        | TRIASSIC      | SYS         |  |  |  |  |  |
| V                                                         | VAALIAN       | ERA         |  |  |  |  |  |
| Z                                                         | SWAZIAN       | ERA         |  |  |  |  |  |
|                                                           | MESOZOIC      | ERA         |  |  |  |  |  |
|                                                           | PALAEOZOIC    | ERA         |  |  |  |  |  |